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1  | INTRODUC TION

Internalizing disorders, including anxiety disorders and major de-
pressive disorder (MDD), are highly prevalent and a major source 
of disability worldwide (LeWinn et al., 2014; Tromp et al., 2019). 
Socioeconomic disadvantage during childhood leads to an enduring 
risk for internalizing problems that persists into adulthood (Gilman, 
Kawachi, Fitzmaurice, & Buka, 2002; Wadsworth, Evans, Grant, 
Carter, & Duffy, 2016). Although previous studies have shed light on 
the neural mechanisms underlying these associations (Farah, 2017), 

this work has focused primarily on composites of socioeconomic 
status (SES) or broad indicators such as family income and parental 
education. Although it is now recommended that socioeconomic 
factors be examined separately (Duncan & Magnuson, 2012; 
Schenck-Fontaine & Panico, 2019), the studies that have done so 
have focused primarily on conventional indicators and not on other, 
more proximal indices, such as material hardship (Schenck-Fontaine 
& Panico, 2019). Research on these more proximal measures is 
needed to fully disentangle how socioeconomic disadvantage may 
impact the developing brain in ways that increase risk for internal-
izing problems (Gershoff, Aber, Raver, & Lennon, 2007; Neckerman, 
Garfinkel, Teitler, Waldfogel, & Wimer, 2016).
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Abstract
Material hardship, or difficulty affording basic resources such as food, housing, utili-
ties, and health care, increases children's risk for internalizing problems. The uncinate 
fasciculus (UNC) and two of the gray matter regions it connects—the orbitofrontal 
cortex (OFC) and amygdala—may play important roles in the neural mechanisms un-
derlying these associations. We investigated associations among material hardship, 
UNC microstructure, OFC and amygdala structure, and internalizing symptoms in 
children. Participants were 5–9-year-old children (N = 94, 61% female) from socio-
economically diverse families. Parents completed questionnaires assessing material 
hardship and children's internalizing symptoms. High-resolution, T1-weighted mag-
netic resonance imaging (n = 51), and diffusion tensor imaging (n = 58) data were ac-
quired. UNC fractional anisotropy (FA), medial OFC surface area, and amygdala gray 
matter volume were extracted. Greater material hardship was significantly associated 
with lower UNC FA, smaller amygdala volume, and higher internalizing symptoms in 
children, after controlling for age, sex, and family income-to-needs ratio. Lower UNC 
FA significantly mediated the association between material hardship and internalizing 
symptoms in girls but not boys. These findings are consistent with the notion that 
material hardship may lead to altered white matter microstructure and gray matter 
structure in neural networks critical to emotion processing and regulation.
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Material hardship captures the lived conditions of economic 
hardship and refers to difficulty affording basic resources, such 
as food, housing, utilities, and health care (Mayer & Jencks, 1989). 
Although families living in poverty are more likely to experi-
ence material hardship, families with incomes above the poverty 
threshold also experience material hardship (Gershoff et al., 2007; 
Zilanawala & Pilkauskas, 2012). Additionally, not all families living in 
poverty experience material hardship, in part because of variability 
in the generosity of the social safety net (Beverly, 2001; Iceland & 
Bauman, 2007). Thus, material hardship has been documented as 
a correlated but distinct construct from income and a more prox-
imal reflection of lived economic hardship than family income. 
Although material hardship has been significantly associated with 
higher internalizing symptoms in children, even after accounting for 
family income (Shankar, Chung, & Frank, 2017; Slopen, Fitzmaurice, 
Williams, & Gilman, 2010; Sun, Li, Zhang, Bao, & Wang, 2015; 
Zilanawala & Pilkauskas, 2012), the neural mechanisms underlying 
these associations are not well understood. As such, the goal of 
this study was to examine the associations among material hard-
ship, brain structure and connectivity, and internalizing symptoms 
in children.

1.1 | Conceptual model guiding this study

Material hardship has been theorized to influence children's so-
cial-emotional development and risk for internalizing problems 
by increasing exposure to chronic stress (Chien & Mistry, 2013; 
Conger & Donnellan, 2007; Gershoff et al., 2007; Huang, Kim, 
& Sherraden, 2017; Sun et al., 2015). Consistent with the family 
stress model (Conger & Donnellan, 2007), material hardship has 
been found to increase parental stress, leading to negative parent-
ing behavior, which in turn increases children's exposure to chronic 
stress and interferes with the development of social-emotional skills, 
such as emotion processing and regulation (Ashiabi & O'Neal, 2007; 
Gershoff et al., 2007; Huang et al., 2017; Sun et al., 2015; Wu & 
Schimmele, 2005). Difficulties with emotion processing and regula-
tion have been found to link exposure to chronic stressors with in-
ternalizing problems. Taken together, material hardship may alter the 
development of frontolimbic circuitry underlying emotion process-
ing and regulation and in turn lead to increases in children's internal-
izing symptoms (see Figure S1).

Key components of frontolimbic circuitry underlying emo-
tion regulation include the uncinate fasciculus (UNC) and two 
of the gray matter regions it connects—namely, the medial orbi-
tofrontal cortex (OFC) and amygdala (Catani, Howard, Pajevic, & 
Jones, 2002; Schmahmann et al., 2007). Variability in UNC mi-
crostructure has been associated with emotion regulation (Hein 
et al., 2018; Swartz, Carrasco, Wiggins, Thomason, & Monk, 2014; 
Zuurbier, Nikolova, Ahs, & Hariri, 2013) and implicated in in-
ternalizing disorders (Adluru et al., 2017; Ho et al., 2017; Tromp 
et al., 2019; Vilgis, Vance, Cunnington, & Silk, 2017). The amyg-
dala is a subcortical structure centrally involved in reactivity to 

emotional stimuli and threat detection (Davidson & Irwin, 1999; 
Davis & Whalen, 2001) and strongly implicated in internalizing 
disorders (Warnell, Pecukonis, & Redcay, 2018). The medial OFC 
(ventromedial prefrontal cortex or vmPFC) is heavily involved in 
emotion regulation and has been consistently implicated in inter-
nalizing disorders (Merz, He, & Noble, 2018; Schmaal et al., 2017). 
However, no work to date has examined these core components of 
frontolimbic circuitry in children in relation to both material hard-
ship and internalizing symptoms.

1.2 | Material hardship, UNC microstructure, and 
OFC and amygdala structure

In diffusion tensor imaging (DTI) studies, fractional anisotropy (FA) 
reflects the degree of directionality of water diffusion in white mat-
ter tracts, which indicates the microstructural properties of white 
matter tracts and in turn capacity for functional communication 
between connected brain regions (Beaulieu, 2002; Thomason & 
Thompson, 2011). Several studies have found associations between 
socioeconomic circumstances and FA in the UNC. However, find-
ings have been mixed. Socioeconomic disadvantage has been associ-
ated with reduced FA in the UNC in children (Dufford & Kim, 2017) 
and adults (Gianaros, Marsland, Sheu, Erickson, & Verstynen, 2013), 
whereas greater food insecurity was associated with higher FA in 
the UNC in children and adolescents (Dennison et al., 2019). Yet an-
other study failed to find a link between socioeconomic factors and 
UNC FA in a large sample of children and adolescents (Ursache & 
Noble, 2016).

In neuroanatomical studies of subcortical gray matter, socio-
economic factors have been similarly variably linked with amygdala 
volume. Socioeconomic disadvantage has been associated with 
smaller amygdala volume (Brody et al., 2017; Hanson et al., 2015; 
Luby et al., 2013; McDermott et al., 2019; Merz, Tottenham, & 
Noble, 2017), larger amygdala volume (Noble, Houston, Kan, & 
Sowell, 2012), or no difference in amygdala volume (Hanson, 
Chandra, Wolfe, & Pollak, 2011; Noble et al., 2015). One possibil-
ity is that these associations vary as a function of the timing or 
duration of socioeconomic disadvantage (McEwen, 2003; Merz 
et al., 2017).

Although socioeconomic factors have been consistently asso-
ciated with prefrontal cortex (PFC) structure, the specific PFC re-
gions where differences have been found have varied (Farah, 2017). 
Recent studies have examined cortical thickness and surface area 
separately, given that they are genetically and developmentally dis-
tinct (Panizzon et al., 2009; Raznahan et al., 2011). Two major studies 
have linked socioeconomic disadvantage with reduced OFC surface 
area in children and adolescents (McDermott et al., 2019; Noble 
et al., 2015). Findings for OFC thickness have been more mixed 
(Lawson, Duda, Avants, Wu, & Farah, 2013; Mackey et al., 2015; 
McDermott et al., 2019; Noble et al., 2015). To our knowledge, no 
work has focused on associations of material hardship with these 
indices of PFC–amygdala structure and microstructure in children.
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1.3 | UNC microstructure and OFC and amygdala 
structure and internalizing problems

Lower FA in the UNC has been significantly associated with inter-
nalizing disorders in children and adolescents (Adluru et al., 2017; 
Cullen et al., 2010; Ho et al., 2017; LeWinn et al., 2014; Tromp 
et al., 2019; Vilgis et al., 2017). Although most studies have used 
clinical samples and compared those with and without an internaliz-
ing disorder, some studies have focused on typically developing chil-
dren and adolescents (Mohamed Ali, Vandermeer, Sheikh, Joanisse, 
& Hayden, 2018). It is also noteworthy that some studies have found 
that higher FA in the UNC is associated with adolescent depression 
(Aghajani et al., 2014; Bracht, Linden, & Keedwell, 2015; Kircanski 
et al., 2019).

Similarly, internalizing disorders or symptoms have been linked 
to amygdala size, although the directionality is again unclear. Both 
larger (Albaugh et al., 2017; De Bellis et al., 2000; van der Plas, 
Boes, Wemmie, Tranel, & Nopoulos, 2010; Qin et al., 2014) and 
smaller amygdala volumes (Merz et al., 2017; Milham et al., 2005; 
Mueller et al., 2013; Rosso et al., 2005; Strawn et al., 2015; Warnell 
et al., 2018) have been associated with internalizing symptoms 
and disorders, and some studies have failed to find significant as-
sociations (Koolschijn, van IJzendoorn, Bakermans-Kranenburg, & 
Crone, 2013; Merz et al., 2018). Duration of the internalizing disor-
der or the number of episodes may partially explain these discrepan-
cies (McEwen, 2003).

Internalizing problems tend to be associated with structural 
differences in the medial OFC (vmPFC), although the specific pat-
terns of these associations are inconsistent. A large meta-analysis 
found that adolescents with MDD had reduced surface area in the 
medial OFC (Schmaal et al., 2017), and another study linked general 
anxiety symptoms with decreased surface area in OFC (Newman 
et al., 2015). Pediatric and adolescent MDD (or depressive symp-
toms) have been associated with reduced OFC thickness in some 
studies (Marrus et al., 2015; Merz et al., 2018; Peterson et al., 2009) 
but not others (Schmaal et al., 2017; Whittle et al., 2014), and pe-
diatric anxiety disorders have been associated with increased OFC 
thickness (Gold et al., 2017; Strawn et al., 2014). Given that most 
studies have focused on adults and adolescents with internalizing 
disorders, more research is needed that focuses on typically devel-
oping children to understand patterns of associations that may pre-
cede the onset of an internalizing disorder (Keenan et al., 2008).

Taken together, altered structural development of PFC–amyg-
dala circuitry underlying emotion processing and regulation may 
represent one mechanism through which material hardship increases 
risk for internalizing disorders in children (see Figure S1). More spe-
cifically, material hardship may alter UNC microstructure and me-
dial OFC structure, leading to weaker downregulation of emotional 
reactivity governed by the amygdala (Hein et al., 2018; Swartz 
et al., 2014; Zuurbier et al., 2013) and in turn greater vulnerability 
to internalizing disorders. Material hardship may simultaneously in-
crease amygdala reactivity to negative emotional stimuli, concomi-
tant with altered amygdala volume, also resulting in greater risk for 

internalizing problems (Gaffrey, Barch, Singer, Shenoy, & Luby, 2013). 
To our knowledge, no work has examined whether these core com-
ponents of PFC–amygdala circuitry mediate associations between 
material hardship and internalizing symptoms in children.

1.4 | Sex differences in these associations

During adolescence, internalizing disorders become much more prev-
alent in girls compared to boys (Hankin et al., 1998). The degree to 
which stressors increase anxiety and depressive symptoms has been 
found to vary by sex, with girls more likely to show stress-related 
increases in these symptoms (Hodes & Epperson, 2019; Oldehinkel 
& Bouma, 2011). Sex differences in the effects of stressors, such 
as material hardship, on PFC–amygdala circuitry are less well un-
derstood. Sex differences have been found in the associations be-
tween adverse, stressful experiences, and PFC–amygdala structure 
and connectivity (Burghy et al., 2012; Whittle et al., 2009, 2016) and 
between PFC–amygdala structure and connectivity and internaliz-
ing disorders (Rubinow & Schmidt, 2019; Tromp et al., 2019; Whittle 
et al., 2014), although consistent patterns have not yet been identi-
fied. Thus, research is needed that investigates sex differences in 
associations among material hardship, PFC–amygdala circuitry, and 
internalizing symptoms in children.

1.5 | Current study

The goal of this study was to investigate associations among ma-
terial hardship, core components of PFC–amygdala circuitry un-
derlying emotion processing and regulation (UNC FA, medial OFC 
surface area, amygdala volume), and internalizing symptoms, and 
whether these indices mediated the association between material 
hardship and internalizing symptoms. Participants were 5–9-year-
old children (N = 94; 61% female) from socioeconomically diverse 
families. Parents completed questionnaires assessing material hard-
ship and children's internalizing symptoms. Children participated in 
an MRI scanning session that included T1- and diffusion-weighted 
sequences. UNC FA (n = 58), medial OFC surface area (n = 51), and 
amygdala gray matter volume (n = 51) were extracted. Given evi-
dence that medial OFC surface area is associated with both socioeco-
nomic disadvantage (McDermott et al., 2019; Noble et al., 2015) and 
internalizing disorders (Newman et al., 2015; Schmaal et al., 2017), 
analyses of medial OFC structure focused on cortical surface area 
rather than thickness.

We hypothesized that higher material hardship would be signifi-
cantly associated with greater internalizing symptoms in children, 
replicating past work (Sun et al., 2015; Zilanawala & Pilkauskas, 2012). 
At the neural level, our a priori hypotheses centered on the UNC and 
two of the gray matter regions it connects, namely the medial OFC 
and amygdala. We expected that material hardship would be asso-
ciated with UNC FA, medial OFC surface area, and amygdala vol-
ume, which would in turn be associated with internalizing symptoms. 
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Directionality could not be specified for these hypotheses due to 
inconsistencies in the existing research, as detailed above (Dennison 
et al., 2019; Dufford & Kim, 2017; Kircanski et al., 2019; LeWinn 
et al., 2014). Finally, we expected these associations to be stronger 
in girls compared to boys (Hodes & Epperson, 2019; Oldehinkel & 
Bouma, 2011).

To examine whether results were specific to material hardship, 
we conducted supplemental analyses of family income-to-needs 
ratio. We expected that material hardship would be more strongly 
associated with internalizing symptoms, UNC microstructure, and 
OFC and amygdala structure compared to family income-to-needs 
ratio. Material hardship reflects the lived conditions of socioeco-
nomic disadvantage which would be expected to more directly in-
crease parental stress. In comparison, lower family income-to-needs 
ratio may be a more distal influence on parental stress (Conger & 
Donnellan, 2007). Although our main diffusion measure of interest 
was FA, given that it is a summary and non-specific measure of white 
matter microstructure (Song et al., 2002), we also examined axial 
diffusivity (AD; water diffusivity along the axon), radial diffusivity 
(RD; water diffusivity perpendicular to the axon) and mean diffu-
sivity (MD; overall magnitude of diffusion) to interpret our results 
with greater specificity (Budde, Xie, Cross, & Song, 2009; Hatton 
et al., 2018; Klawiter et al., 2011; Winklewski et al., 2018).

2  | METHODS

2.1 | Participants

2.1.1 | Recruitment

Participants were recruited in New York, New York through local 
family events and posting flyers in the neighborhood. Families 
were recruited to generate a socioeconomically diverse sample. 
Participants were screened for eligibility over the phone. Inclusion 

criteria for children included: between 5 and 9 years of age, born 
after 37 gestational weeks, product of a singleton pregnancy, no 
history of medical or psychiatric conditions, English as the primary 
language spoken in the home, and no contraindications for MRI 
scanning.

2.1.2 | Sample characteristics

Participants ranged in age from 5.06 to 9.87 years (N = 94; 61% fe-
male). Parental education ranged from 6.50 to 20.00 years, and fam-
ily income-to-needs ratio ranged from 0.17 to 15.21. Fifty percent 
were Hispanic/Latino; 31% were African American, non-Hispanic/
Latino; and 14% were European American, non-Hispanic/Latino. 
Thirty percent of the families had household incomes below the US 
poverty threshold (see Table 1).

2.2 | Procedure and sample sizes

Families took part in two study visits within a month. During the 
first visit, parents (N = 94) completed questionnaires which in-
cluded items on socioeconomic background and child internalizing 
symptoms. Eighty-five children were enrolled in the MRI portion 
of the study and participated in a mock MRI scan. During the sec-
ond visit, 66 children participated in an actual MRI scanning ses-
sion. MRI data were not acquired if the child was afraid, fidgety, or 
uninterested during the mock scan (n = 7) or if the child or family 
decided not to participate in the actual MRI scan following the 
mock scan (n = 12). T1-weighted MRI data were acquired for all 66 
children. Diffusion-weighted imaging data were acquired for 61 
children, as five children discontinued their scanning session prior 
to the diffusion-weighted sequence. There were no significant dif-
ferences in material hardship, t(92) = 0.46, p = .64, internalizing 
symptoms, t(82) = −0.30, p = .76, or family income-to-needs ratio, 

TA B L E  1   Descriptive statistics for sample characteristics (N = 94)

M SD

Child age (years) 7.03 1.29

Family income-to-needs ratio 2.68 2.79

Parental education (years) 14.14 2.64

% n

Child sex (female) 60.64 57

Child race/ethnicity

African American, non-Hispanic/Latino 30.85 29

Hispanic/Latino 50.00 47

European American, non-Hispanic/Latino 13.83 13

Other 5.32 5

Family income below US poverty thresholda  29.79 28

Note: Parental education reflects educational attainment averaged across parents.
aIncome-to-needs ratio <1.00. 
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t(92) = −0.17, p = .87, between participants with and without imag-
ing data. Informed consent/assent was obtained from all families. 
All procedures were approved by the Institutional Review Boards 
at the New York State Psychiatric Institute and Teachers College, 
Columbia University.

2.3 | MRI acquisition and processing

MRI data were acquired on a 3-Tesla General Electric (GE) Discovery 
MR750 scanner with a 32-channel head coil. Whole brain DTI data 
were acquired using a single-shot spin echo planar imaging sequence 
with the following parameters: 60 axial slices, 2.5 mm slice thickness, 
TR = 15,700 ms, TE = 86.4 ms, FOV (x) = 24 mm, FOV (y) = 24 mm, 
matrix size = 132 × 128 (machine-interpolated to 256 × 256 for 
post-processing), voxel size = 0.94 mm × 0.94 mm × 2.5 mm. The 
diffusion-weighted images were acquired along 15 non-collinear di-
rections with b = 1,000 s/mm2. Three baseline images with b = 0 s/
mm2 were also acquired. Two trained research assistants visually 
inspected the raw diffusion-weighted images, eddy current cor-
rected diffusion-weighted images, and color encoded FA images (He 
et al., 2014). This resulted in the exclusion of three participants' DTI 
data due to motion artifacts. Thus, 58 children had usable DTI data.

Images were processed using FMRIB Software Library (FSL) ver-
sion 5.0.11 (Oxford, UK; Smith et al., 2004). DTI acquisitions were 
corrected for subject motion, eddy current-induced distortion, out-
lier replacement, and within-volume (or “slice-to-volume”) move-
ment using FSL Eddy (Andersson et al., 2017; Andersson, Graham, 
Zsoldos, & Sotiropoulos, 2016). Brain Extraction Tool (Smith, 2002) 
was used to extract a brain mask from the eddy corrected image to 
exclude non-brain tissue. FSL DTIFIT was used to fit diffusion ten-
sors at each voxel, and the FA image was derived from the fitted 
diffusion tensors. Data were then processed using tract-based spa-
tial statistics (TBSS; Smith et al., 2006). Since the subjects were all 
young children, the adult-derived target image (FMRIB58_FA) was 
inappropriate for registering the FA image from the subject's native 
space to the template space. Therefore, we automatically identified 
the most representative one as the target image from all subjects, 
and the target image was then affine aligned into MNI152 standard 
space. Each FA image was then transformed into standard space 
by combining the nonlinear transform to the target FA image with 
the affine transform from that target to the standard space. A skel-
eton of white matter tracts that were common to all participants 
was created by thinning the mean FA image using a threshold of 0.2. 
Nonlinear warps and skeleton projection were then also applied to 
MD, RD, and AD images. The Johns Hopkins University (JHU) white 
matter tractography atlas (Wakana et al., 2007) was used to quantify 
mean FA for the right and left UNC from the skeletonized FA image. 
As right and left UNC FA were significantly correlated, r = .80, 
p < .0001, and we did not have a priori hypotheses about laterality, 
we averaged UNC FA values across the left and right hemispheres. 
UNC MD, RD, and AD values were also extracted and averaged 
across the right and left hemispheres.

2.3.1 | T1 weighted

Anatomical imaging data were acquired using a high-resolution 
T1-weighted fast spoiled gradient echo sequence (TR = 7.1 ms; 
TE = 2.7 ms; TI = 500 ms; flip angle = 11 degrees; 176 sagittal slices; 
1.0 mm slice thickness; FOV = 25 cm; inplane resolution = 1.0 by 
1.0 mm). All images were visually inspected for motion artifacts and 
ghosting, resulting in the exclusion of 15 participants' data from 
analyses. There was no manual editing of imaging data that were 
deemed usable.

Cortical reconstruction and volumetric segmentation were 
performed using standard automated procedures in FreeSurfer 
(version 6.0; http://surfer.nmr.mgh.harva rd.edu/; Dale, Fischl, & 
Sereno, 1999; Fischl & Dale, 2000; Fischl et al., 2004). The cortex 
was parcellated into gyral-based regions based on the Desikan-
Killiany atlas (Desikan et al., 2006). Cortical surface area was cal-
culated as the sum of the area of the vertices falling within a given 
region. Surface area in the left and right medial OFC was extracted. 
As we did not have a priori hypotheses about laterality, and left 
and right medial OFC surface area were significantly correlated, 
r = .72, p < .001, surface area was summed across the left and right 
hemispheres.

Automated segmentation of subcortical volumes in FreeSurfer 
has been shown to be robust to anatomic variability and to have ac-
curacy comparable to manual labeling techniques (Fischl et al., 2002; 
Makowski et al., 2018). All segmentations of the amygdala passed 
visual inspection for major errors. As right and left amygdala volume 
were significantly correlated, r = .67, p < .0001, and we did not have 
a priori hypotheses about laterality, amygdala volume was summed 
across the right and left hemispheres.

2.4 | Measures

2.4.1 | Income-to-needs ratio

Parents reported their annual household income and the number of 
adults and children in the household. The income-to-needs ratio was 
calculated by dividing household income by the poverty threshold 
for the size of the family.

2.4.2 | Material hardship

The Material Deprivation Scale (Pilkauskas, Currie, & Garfinkel, 2012) 
is a 14-item survey which asks parents if they have experienced 
hardships in paying bills (e.g., rent, utilities), providing enough food 
for their family, affording medical care, and maintaining adequate 
housing in the last year. Parents responded to each item on a binary 
scale (yes = 1; no = 0), and affirmative answers were summed to 
create a total score. Higher scores indicate greater material hardship 
(Cronbach's α = 0.77). Material hardship was significantly inversely 
associated with income-to-needs ratio, r = −.36, p < .001.

http://surfer.nmr.mgh.harvard.edu/
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2.4.3 | Child internalizing symptoms

Parents completed the Revised Child Anxiety and Depression 
Scale–Parent Version (RCADS-P; Chorpita, Moffitt, & Gray, 2005), 
a 47-item questionnaire assessing internalizing symptoms in children 
between 6 and 18 years old. Parents rate each item on a 4-point 
scale ranging from 0 (never) to 3 (always). The total score (Cronbach's 
α = 0.90) was used in this study. The RCADS-P has been shown to 
demonstrate adequate internal consistency and validity (Ebesutani, 
Tottenham, & Chorpita, 2015).

The RCADS-P was added to the protocol once a number of 
families had already participated. More specifically, 36% (n = 30) 
of parents completed the RCADS-P over the phone on a day after 
the MRI scan, while 64% (n = 54) of parents did so during the 
first testing session as described above. All analyses of children's 
internalizing symptoms accounted for when the RCADS-P was 
completed.

2.5 | Statistical analyses

Using SAS (version 9.3), multiple linear regression was conducted 
to examine the associations of material hardship with children's 
internalizing symptoms, UNC FA, medial OFC surface area, and 
amygdala volume. We then used multiple linear regression to ex-
amine associations of children's UNC FA, medial OFC surface area, 
and amygdala volume with their internalizing symptoms. Mediation 
models were run to examine whether UNC FA, medial OFC sur-
face area, or amygdala volume mediated the association between 
material hardship and internalizing symptoms. The significance of 
the mediated or indirect effect was tested using bias-corrected 
bootstrapping via the PROCESS macro in SAS (Hayes, 2013; 
Preacher & Hayes, 2008). To test the a priori hypothesis that these 

associations would be stronger in girls, these analyses were then 
run in boys and girls separately. The threshold for statistical sig-
nificance was p < .05.

Child age, sex, and family income-to-needs ratio were included 
as covariates in these regression models. Whole brain volume was 
also included in analyses of amygdala volume. Time of RCADS-P 
completion was included as a covariate in analyses of internaliz-
ing symptoms. Given that there were no significant racial/ethnic 
differences in UNC FA, medial OFC surface area, amygdala vol-
ume or internalizing symptoms (all p's = .36–.64), race/ethnicity 
was not included as a covariate. Data points that were more than 
three SDs above the mean for internalizing symptoms (n = 1) or 
material hardship (n = 1) were Winsorized. Given that family ma-
terial hardship and income are correlated but distinct constructs 
and families with varying household incomes may experience 
material hardship, analyses of material hardship controlled for 
family income-to-needs ratio, as recommended in recent publica-
tions (Schenck-Fontaine & Panico, 2019). To control for multiple 
comparisons, false discovery rate (FDR) correction (Benjamini & 
Hochberg, 1995) was applied (via PROC MULTTEST in SAS) to 
analyses of associations of material hardship with UNC FA, medial 
OFC surface area, and amygdala volume (α = 0.05). When signifi-
cant differences in UNC FA were found, follow-up analyses of AD, 
RD, and MD in the UNC were conducted.

3  | RESULTS

Descriptive statistics and zero-order correlations for material hard-
ship, UNC FA, medial OFC surface area, amygdala volume, and in-
ternalizing symptoms are provided in Table 2. Material hardship was 
significantly positively correlated with internalizing symptoms in 
children.

TA B L E  2   Descriptive statistics and zero-order correlations for material hardship, uncinate fasciculus FA, medial OFC and amygdala 
structure, and internalizing symptoms

1 2 3 4 5

1. Material hardship —

2. Uncinate fasciculus FA −0.18 —

3. Medial OFC surface area 
(mm2)

−0.02 0.20 —

4. Amygdala volume (mm3) −0.25* 0.23 0.65*** —

5. Internalizing symptoms 0.27** −0.01 0.05 −0.06 —

N 94 58 51 51 84

M 2.54 0.52 3,224.61 2,820.81 22.14

SD 2.04 0.03 523.17 371.91 11.42

Range 0.00–9.00 0.45–0.59 2,133.00–4,287.00 1,637.80–3,563.50 3–60

Abbreviations: FA, fractional anisotropy; OFC, orbitofrontal cortex.
*p < .10; 
**p < .05; 
***p < .001. 
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3.1 | Material hardship and internalizing symptoms

Greater material hardship was significantly associated with higher 
internalizing symptoms in children, β = 0.28, p = .02, �2

p
=0.07 (see 

Figure 1).

3.2 | Material hardship, UNC microstructure, and 
medial OFC and amygdala structure

Higher material hardship was significantly associated with lower 
UNC FA, β = −0.29, p = .03, �2

p
=0.09 (see Figure 2), and smaller 

amygdala volume, β = −0.29, p = .01, �2
p
=0.15 (see Figure 3), but 

not significantly associated with medial OFC surface area, β = 0.06, 
p = .68, �2

p
=0.004. After FDR correction for multiple comparisons, 

material hardship remained significantly associated with UNC FA 
(FDR-corrected p = .04) and amygdala volume (FDR-corrected 
p = .02). Figure 4 shows representative images of the uncinate fas-
ciculus and amygdala.

3.3 | UNC microstructure, medial OFC and 
amygdala structure, and internalizing symptoms

UNC FA, medial OFC surface area, and amygdala volume were 
not significantly associated with children's internalizing symptoms 
(p = .28–.66). UNC FA, medial OFC surface area, and amygdala vol-
ume did not significantly mediate the association between material 
hardship and internalizing symptoms.

3.4 | Sex differences

Material hardship-by-sex interactions for indices of PFC–amygdala cir-
cuitry were not significant, likely due to the relatively small sample size. 
However, this interaction for the UNC had a small effect size (�2

p
=0.02) 

F I G U R E  1   Greater material hardship was significantly 
associated with higher internalizing symptoms in children. 
Regression analyses controlled for age, sex, family income-to-needs 
ratio and when the RCADS-P was completed. RCADS-P, Revised 
Child Anxiety and Depression Scale–Parent Version

F I G U R E  2   Greater material hardship was significantly 
associated with lower fractional anisotropy (FA) in the uncinate 
fasciculus

F I G U R E  3   Greater material hardship was significantly 
associated with smaller amygdala volume (mm3)

F I G U R E  4   Representative images of the uncinate fasciculus 
and amygdala overlaid on the MNI152 T1 image are presented for 
visualization purposes. The amygdala is displayed in green and the 
uncinate fasciculus is displayed in red and blue. Note that although 
we extracted amygdala volume in local subject space, we show the 
amygdala in MNI space for visualization purposes



8  |     LICHTIN eT aL.

whereas for the amygdala and medial OFC it had negligible effect sizes 
(�2
p
=0.00−0.001). The UNC FA/OFC surface area/amygdala volume-

by-sex interactions were not significant, but the interaction had a me-
dium effect size for the UNC (�2

p
=0.05) compared to negligible effect 

sizes for the amygdala (�2
p
=0.01) and medial OFC (�2

p
=0.001). These 

results coupled with our a priori hypotheses about sex differences sup-
ported the analysis of associations among material hardship, UNC FA, 
and internalizing symptoms separately in boys and girls. Such analyses 
revealed that greater material hardship was significantly associated 
with lower UNC FA in girls (n = 35), β = −0.42, p = .02, �2

p
=0.17, but not 

boys (n = 23), β = −0.09, p = .66, �2
p
=0.01. UNC FA was not significantly 

associated with internalizing symptoms in girls or boys. Nonetheless, 
the indirect effect between material hardship and internalizing symp-
toms via UNC FA was significant for girls (n = 32), ab = 0.12, SE = 0.10, 
95% CI: [0.004, 0.42], but not boys. In girls, greater material hardship 
was associated with lower UNC FA, which was in turn associated with 
higher internalizing symptoms (see Figure 5). To rule out alternative in-
terpretations, mediation models were run in which the predictor and 
mediator were switched and the mediator and outcome were switched. 
Neither of these alternative models yielded significant indirect effects.

3.5 | Specificity of results to material hardship

Family income-to-needs ratio was not significantly associated with 
internalizing symptoms, β = 0.11, p = .33, UNC FA, β = −0.23, 
p = .08, medial OFC surface area, β = 0.26, p = .06, or amygdala 
volume, β = −0.10, p = .34.

3.6 | Material hardship and RD, AD, and MD 
in the UNC

Greater material hardship was significantly associated with lower 
AD in the UNC, β = −0.45, p = .002, �2

p
=0.17, but not significantly 

associated with RD in the UNC, β = 0.13, p = .33, �2
p
=0.02, or MD in 

the UNC, β = −0.17, p = .25, �2
p
=0.03. Exploratory whole brain voxel-

based analyses indicated material hardship was not significantly as-
sociated with FA values across the brain after correction for multiple 
comparisons at p < .05.

4  | DISCUSSION

The goals of this study were to examine associations among mate-
rial hardship, core components of PFC–amygdala circuitry underly-
ing emotion processing and regulation (UNC microstructure, medial 
OFC surface area, amygdala volume), and internalizing symptoms 
in children, and whether these indices of PFC–amygdala structure 
mediated associations between material hardship and internalizing 
symptoms. Material hardship refers to difficulty affording basic ne-
cessities, such as food and housing, capturing the lived conditions 
of economic hardship (Mayer & Jencks, 1989; Schenck-Fontaine 
& Panico, 2019). Findings indicated that greater material hardship 
was significantly associated with higher internalizing symptoms 
in children, replicating past work (Sun et al., 2015; Zilanawala & 
Pilkauskas, 2012). Greater material hardship was also significantly 
associated with lower FA in the UNC, consistent with previous 
studies of socioeconomic factors (Dufford & Kim, 2017; Gianaros 
et al., 2013). Lower FA in the UNC may indicate weaker connectiv-
ity and communication between PFC regions and anterior temporal 
regions, such as the amygdala, and lower ability to downregulate 
amygdala reactivity (Hein et al., 2018; Swartz et al., 2014) and in 
turn negative emotions (Zuurbier et al., 2013).

Greater material hardship was also significantly associated 
with smaller amygdala volume in children, consistent with previous 
work on family income and parental education (Brody et al., 2017; 
Hanson et al., 2015; Luby et al., 2013; McDermott et al., 2019; Merz 
et al., 2017). Smaller amygdala volume has been associated with 
greater reactivity to negative emotional stimuli (e.g., high fearful-
ness or stress reactivity) in animal models (Pedraza et al., 2014; Yang 
et al., 2008) and human studies (Foell et al., 2019). Furthermore, there 
is evidence of an inverse association between amygdala volume and 
amygdala reactivity to negative emotional stimuli (e.g., threat cues, 
stressors) in humans (Gianaros et al., 2008; Kalmar et al., 2009) and 
in animals (Pedraza et al., 2014). Taken together, the combination 
of heightened emotional reactivity and reduced emotion regulation 
could lead to more frequent or intense experiences of negative emo-
tion and possibly increased risk for internalizing problems.

Material hardship was more strongly associated with UNC FA 
and amygdala volume than family income-to-needs ratio, consis-
tent with the possibility that it has more proximal or independent 
associations with these outcomes (Conger & Donnellan, 2007; 
Schenck-Fontaine & Panico, 2019). Material hardship may lead to 
altered UNC microstructure and amygdala volume through several 
proximal mechanisms. Material hardship has been associated with 
nutritional deficiencies (Rose, 1999; Rose & Oliveira, 1997), in-
creased exposure to environmental toxins (Chuang, Callahan, Lyu, 

F I G U R E  5   FA in the uncinate fasciculus (UNC) significantly 
mediated the association between material hardship and 
internalizing symptoms in girls. Greater material hardship was 
associated with lower FA in the UNC, which was in turn associated 
with higher internalizing symptoms in girls. The upper line between 
material hardship and internalizing symptoms represents the 
total effect while the lower line represents the direct effect after 
accounting for the mediated or indirect effect. FA, fractional 
anisotropy. +p < .10



     |  9LICHTIN eT aL.

& Wilson, 1999; Jerrett, 2009; Mohai, Lantz, Morenoff, House, 
& Mero, 2009; Morello-Frosch, Zuk, Jerrett, Shamasunder, & 
Kyle, 2011), reduced investments in children's social-emotional 
development (e.g., high-quality early care and education; Duncan, 
Magnuson, & Votruba-Drzal, 2017), and chronic stress (Conger & 
Donnellan, 2007; Gershoff et al., 2007; Newland, Crnic, Cox, & Mills-
Koonce, 2013; Sun et al., 2015). According to the family stress model 
(Conger & Donnellan, 2007) and animal models of chronic stress 
(McEwen, Nasca, & Gray, 2016), material hardship may increase pa-
rental stress, leading to lower quality parental care, which in turn 
exposes children to chronic stress and alters their PFC–amygdala 
circuitry (see Figure S1; Chien & Mistry, 2013; Gershoff et al., 2007; 
Huang et al., 2017; Sun et al., 2015). Research is needed to tease 
apart the roles of these different possible mechanisms.

Relatedly, specific types of material hardship (e.g., food insecurity, 
housing instability, unmet medical needs, utility shut-offs) have been 
differentially associated with children's health and developmental 
outcomes (Yoo, Slack, & Holl, 2009; Zilanawala & Pilkauskas, 2012). 
Research is needed to investigate the roles of these specific types of 
material hardship and their potentially unique contributions to chil-
dren's brain structure and connectivity.

Although significant interactions were not found between mate-
rial hardship and child sex, we analyzed UNC FA separately in boys 
and girls to test our a priori hypothesis that associations would be 
stronger in girls. In girls, UNC FA significantly mediated the associa-
tion between material hardship and internalizing symptoms. Greater 
material hardship was associated with lower UNC FA, which was in 
turn associated with higher internalizing symptoms. It is possible that 
during middle childhood, girls are particularly susceptible to the ef-
fects of chronic stress on PFC–amygdala circuitry, consistent with re-
cent reviews (Hodes & Epperson, 2019; Oldehinkel & Bouma, 2011). 
In girls, material hardship may reduce FA in the UNC, weakening the 
ability of the PFC to downregulate amygdala reactivity to negative 
emotional stimuli and increasing risk for internalizing disorders (Hein 
et al., 2018; Swartz et al., 2014; Zuurbier et al., 2013). However, it is 
important to note the small sample size and cross-sectional design 
of this study.

UNC FA and medial OFC and amygdala structure were not 
significantly associated with internalizing symptoms in children. 
Previous research has linked these measures of PFC–amygdala 
structure with internalizing disorders and symptoms in children 
and adolescents, although the directionality of these associations 
has been inconsistent across studies (Adluru et al., 2017; Albaugh 
et al., 2017; Cullen et al., 2010; De Bellis et al., 2000; Ho et al., 2017; 
LeWinn et al., 2014; Merz et al., 2017; Milham et al., 2005; 
Mueller et al., 2013; van der Plas et al., 2010; Qin et al., 2014; 
Rosso et al., 2005; Strawn et al., 2015; Tromp et al., 2019; Vilgis 
et al., 2017; Warnell et al., 2018). These associations have been 
found in clinical samples as well as typically developing children 
and adolescents (Merz et al., 2017; Mohamed Ali et al., 2018). It 
is possible that these associations vary by age (McEwen, 2003) or 
are stronger and more consistent for biobehavioral indices (e.g., 
threat sensitivity) associated with internalizing symptoms (Foell 

et al., 2019). These possibilities should be investigated in future 
work.

At the cellular level, lower FA may reflect a number of processes, 
including lower myelination, coherence in orientation, and/or den-
sity of fibers (Song et al., 2002). In addition to lower FA, material 
hardship was significantly associated with lower AD in the UNC. 
While there is more to understand about the neurobiological under-
pinnings of the diffusion signal, evidence suggests that decreases in 
AD may reflect axonal disorganization (Budde et al., 2009; Hatton 
et al., 2018; Klawiter et al., 2011; Winklewski et al., 2018). DTI meth-
ods are limited with regard to specifying the underlying cellular 
processes (Jones, Knösche, & Turner, 2013). Future research using 
complementary MRI techniques is needed to more fully understand 
the cellular mechanisms that may be driving differences in white 
matter microstructure.

This study had a number of strengths, including the use of a 
multi-modal neuroimaging approach, strong psychometric proper-
ties of the questionnaire measures, hypotheses derived from prior 
theoretical and empirical work, focus on novel research questions, 
and analyses accounting for an array of potentially confounding 
factors. Several limitations of this study should also be taken into 
account when interpreting the results. First, given that this study 
employed a cross-sectional, correlational design, inferences about 
developmental change or causality cannot be made. Second, re-
searchers have raised concerns regarding potential biases when 
testing mediation models using data from cross-sectional studies 
(Cole & Maxwell, 2003; Maxwell & Cole, 2007). Such analyses can 
still be valuable in terms of revealing possible mechanisms when 
the mediation model being tested is theoretically and empirically 
based (Shrout, 2011). Nonetheless, research is needed that tests 
these mediation models using longitudinal data. Third, small sam-
ple size may have limited our power to detect significant interac-
tions for the UNC. Given that effect sizes for those interactions 
were small to medium, future studies should test such interactions 
using larger samples. Fourth, material hardship was measured 
through parent report, rather than an objective assessment of 
actual lived conditions. Therefore, this measure may confound 
economic stress and material hardship. Fifth, the strength of the 
association between material hardship and children's internalizing 
symptoms may have been influenced by shared method variance. 
Sixth, this study focused on the UNC and two of the gray matter 
regions it connects. Future studies should investigate additional 
neural networks in terms of their potential mechanistic role in 
linking material hardship with elevated internalizing symptoms in 
children. Indeed, other neural systems that have been associated 
with both socioeconomic disadvantage and internalizing problems 
could play roles in these mechanisms (Lambert, King, Monahan, & 
McLaughlin, 2017). Future studies should also examine whether 
associations of material hardship with UNC FA and amygdala vol-
ume may be specific to the right or left hemispheres. Such anal-
yses would add to our understanding of how material hardship 
may affect the neural circuitry underlying emotion processing and 
regulation.
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In conclusion, this study is the first to reveal that material hard-
ship may be associated with lower PFC–amygdala structural connec-
tivity and amygdala volume in children. These neural networks have 
been linked with reduced emotion regulation and greater emotional 
reactivity. In girls, lower structural connectivity between PFC regions 
and medial temporal regions (e.g., amygdala) may partially explain 
associations between material hardship and internalizing symptoms. 
These findings have practice and policy implications, including un-
derscoring the importance of continued state and federal funding for 
income-support and safety net programs, which have been found to 
reduce families' experiences of material hardship and improve chil-
dren's health outcomes (Black et al., 2004; Frank et al., 2006; Meyers 
et al., 2005; Pilkauskas et al., 2012). Programs and policies that reduce 
material hardship during childhood may prevent alterations in the 
development of emotion processing and regulatory neural networks 
that increase the risk for mental health problems.
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