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Abstract
Recent findings indicate robust associations between socioeconomic status (SES) and

brain structure in children, raising questions about the ways in which SESmay modify struc-

tural brain development. In general, cortical thickness and surface area develop in nonlinear

patterns across childhood and adolescence, with developmental patterns varying to some

degree by cortical region. Here, we examined whether age-related nonlinear changes in

cortical thickness and surface area varied by SES, as indexed by family income and paren-

tal education.We hypothesized that SES disparities in age-related changemay be particu-

larly evident for language- and literacy-supportingcortical regions. Participants were 1148

typically-developing individuals between 3 and 20 years of age. Results indicated that SES

factors moderate patterns of age-associated change in cortical thickness but not surface

area. Specifically, at lower levels of SES, associations between age and cortical thickness

were curvilinear, with relatively steep age-related decreases in cortical thickness earlier in

childhood, and subsequent leveling off during adolescence. In contrast, at high levels of

SES, associations between age and cortical thickness were linear, with consistent reduc-

tions across the age range studied. Notably, this interaction was prominent in the left fusi-

form gyrus, a region that is critical for reading development. In a similar pattern,SES factors

significantlymoderated linear age-related change in left superior temporal gyrus, such that

higher SES was linked with steeper age-related decreases in cortical thickness in this

region. These findings suggest that SESmay moderate patterns of age-related cortical thin-

ning, especially in language- and literacy-supportingcortical regions.
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Introduction
Experience-dependentplasticity has been found across many neural systems during childhood.
At the cellular level, synaptic pruning is a hallmark of experience-dependentplasticity:
repeated use strengthens synapses, while infrequent use leads to synaptic elimination [1–3].
Brain development may vary by socioeconomic status (SES) [4, 5], typically indexed by family
income and/or parental education [6]. SES-related variability in children’s experiences has
been associated with cognitive and social-emotional development throughout childhood and
adolescence [7]. Some of the largest socioeconomicdisparities have been found in the language
domain [8]. Recent neuroimaging research has demonstrated that SES is associated with differ-
ences in children’s neural structure, especially in regions supporting language, memory and
executive function [5, 8–12] raising questions about the ways in which family socioeconomic
circumstance may modify developmental trajectories of brain structure.

In general, cortical structure develops nonlinearly and is influenced by both genetics and
experience.Although most structuralmagnetic resonance imaging (MRI) studies have focused
on cortical volume, this measure is a composite of cortical surface area (SA) and cortical thick-
ness (CT), which are genetically and phenotypically independent [13–15]. SA and CT differ in
their nonlinear developmental trajectories. SA expands through childhood and early adoles-
cence and then decreases through middle adulthood [16–18]. In contrast, CT decreases rapidly
in childhood and early adolescence, followed by a more gradual thinning, and ultimately pla-
teauing in early- to mid-adulthood [15, 19–23]. These developmental changes in CT and SA
are thought to relate to synaptic pruning and increases in white matter myelination [19, 21,
24–27]. Patterns of CT and SA development vary across cortical regions, with some regions
exhibiting more nonlinear patterns of development than others [23, 28].

Studies of SES that have distinguished between SA and CT have reported that higher SES is
associated with both greater SA [4] and greater CT [29, 30] in children and adolescents. For
example, in a study of 3- to 20-year-olds, higher family income and parental education were
significantly associated with greater SA, independent of age (including linear and quadratic
terms), sex, genetic ancestry, and scanner [4]. Some research has also suggested that age-related
changes in cortical and subcortical volume vary by SES [31, 32], particularly in language-sup-
porting cortical regions [33]. For example, in a study of 5- to 17-year-old children, interactions
between parental education and child age were found for volumes of the left superior temporal
gyrus (STG) and left inferior frontal gyrus (IFG) [33]. Among higher SES children, relative
regional volume increasedwith age, whereas for lower SES children, relative regional volume
decreasedwith age (adjusted for total cortical volume) [33].

While previous work has suggested that linear age-related differences in SA and CT may be
invariant across SES [4], little is known about how SES may modify nonlinear patterns of SA
and CT development. This research question is an important one, because the shape of devel-
opmental trajectoriesmay be a better indicator of differences in neurodevelopment than corti-
cal differences at any single time point [34]. Differences in developmental trajectories have
been found for children with psychiatric diagnoses [35–37], those with a history of prenatal
alcohol exposure [34], and typically-developing children with different levels of general cogni-
tive development [38]. Thus, investigating socioeconomicdifferences in patterns of age-related
change across childhood and adolescence could lead to new insights about experience-related
differences in structural brain development that underlie socioeconomicdisparities in behav-
ioral development.

As such, in this study of children and adolescents, we examined whether nonlinear develop-
mental changes in CT and SA vary by SES. In separate models, we examined whether family
income and parental education moderate the nonlinear association between age and mean CT
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and total SA. Family income and parental education were analyzed separately because they
contribute distinctly to children’s development, at both the behavioral [39] and neural levels
[40, 41]. We use vertex-based and region of interest (ROI) approaches to examine regions for
which this interaction was significant. Based on prior studies [11, 41] we hypothesized that age
by SES interactions would be prominent in the left hemisphere language cortex, including left
fusiform gyrus, left IFG [42], and left STG [43].

Method

Participants
This study uses data from the multi-site Pediatric Imaging, Neurocognition, and Genetics
(PING) study (http://ping.chd.ucsd.edu). As described in detail previously [4, 44] participants
were recruited through a combination of web-based, word-of-mouth, and community advertis-
ing at nine university-based data collection sites in and around the cities of Los Angeles, San
Diego, New Haven, Sacramento, Boston, Baltimore, Honolulu, and New York. Participants
were excluded if they had a history of neurological, psychiatric, medical, or developmental dis-
orders. All participants and their parents gave their informed written consent/assent to partici-
pate in all study procedures, including whole genome SNP genotype, demographic and
developmental history questionnaires, and high-resolution brain MRI (see Table 1 for partici-
pant demographics). Each data collection site’s Office of Protection of Research Subjects and
Institutional ReviewBoard approved the original study. The current secondary data analyses
were approved by the Teachers College, Columbia University Institutional ReviewBoard (#16–
103).

Socioeconomic status
As described in detail previously [4], parents were asked to report the level of educational
attainment for all parents in the home. The average parental educational attainment was used

Table 1. Sample demographics (N = 1148).

M (SD) or n (%) Range

Age in years 12.05 (4.94) 3–20

Sex

Female 554 (48%) —

Male 594 (52%) —

Parental education in years 15.03 (2.25) 6–18

Family income in U.S. dollars 97,617 (76,719) 4,500–325,000

Genetic ancestry factor (GAF)

African .13 (.26) 0–1

American Indian .05 (.11) 0-.83

Central Asian .03 (.13) 0–1

East Asian .16 (.31) 0–1

European .63 (.37) 0–1

Oceanic .01 (.03) 0-.25

Note. GAF data show mean, standard deviation, and range across all subjects of the estimated proportionof

genetic ancestry for each reference population. Descriptive statistics for demographics are provided for 1148

subjects, which is the maximumnumber of subjects used in analyses (as indicated in the Statistical Analyses

section). U.S., United States.

doi:10.1371/journal.pone.0162511.t001
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in all analyses. Parents were also asked to report the total yearly family income. Data were not
collected on the number of adults and children in the home, and thus we could not calculate
income-to-needs ratios. Both education and income data were originally collected in bins,
which were recoded as the means of the bins for analysis (see S1 Table). Family income was
log-transformed for all analyses due to the typically observedpositive skew. As expected, parent
education and income were highly correlated (r = .526, p< 10−6). There were no SES differ-
ences in the sample by sex (parent education: t(1097) = 1.07, p = .28; family income: t(1097) =
.19, p = .85). Parental education was associated with child age (r = −0.07, p< 0.05).

Image acquisition and processing
Each site administered a standardized structuralMRI protocol (see S2 Table for scanner mod-
els and parameters). Image acquisition and processing techniques have been describedprevi-
ously [44, 45]. Briefly, high-resolution structuralMRI included a three-dimensional
T1-weighted scan, a T2-weighted volume, and diffusion-weighted scans with multiple b values
and 30 directions. In this paper, we focus on the T1-weighted images. All neuroimaging data
passed a standardized quality control procedure. Image processing and analyses were per-
formed using a modified FreeSurfer software suite (http://surfer.nmr.mgh.harvard.edu/) to
obtain measures of cortical and subcortical volume and vertex-wiseCT and SA [46]. Thirty-
four cortical regions in each hemisphere were automatically parcellated by FreeSurfer using the
Desikan-KillianAtlas [47], including the STG and fusiform gyrus. The IFG included the fol-
lowing Desikan-Killian parcellations: pars triangularis, pars orbitalis, and pars opercularis. CT
of the IFG was computed by averaging CT for these parcellations, whereas SA of the IFG was
computed by summing SA for these parcellations.

Genetic collection and analysis
As described in detail previously [4], saliva samples were sent to Scripps Translational Research
Institute (STRI) for analysis. Once extracted, genomic DNA was genotyped with Illumina
Human660W-Quad BeadChip. Replication and quality control filters (that is, sample call rate
>99, call rates>95%, minor allele frequency>5%) were performed [48]. To assess genetic
ancestry and admixture proportions in the PING participants, a supervisedclustering
approach implemented in the ADMIXTURE software was used [49]. Using this approach, a
GAF was developed for each participant, representing the proportion of ancestral descent for
each of six major continental populations: African, Central Asian, East Asian, European,
Native American and Oceanic. Implementation of ancestry and admixture proportions in the
PING subjects is described in detail elsewhere [50]. A more complete description of the genetic
ancestry of the PING sample is presented elsewhere [51].

Statistical analyses
Children were nested within scanners within sites (nine total sites, 12 total scanners). Seven
sites used one scanner, one site used two scanners, and one site used three scanners; thus, nest-
ing within scanner and nesting within site were conflated. To account for nesting within scan-
ner/site, multilevel modeling was conducted using SAS software (Version 9.3). To reduce
multicollinearity and obtain standardized parameter estimates, all variables were standardized
before running the models. As income was positively skewed, it was log-transformed, and the
log of income was included in all of the models. For the parental education model, there were
1148 children with complete data on the relevant variables (i.e., age, sex, parental education,
GAF, scanner/site, SA, and CT). For the family income model, there were 1138 children with
complete data on the relevant variables (i.e., age, sex, family income, GAF, scanner/site, SA,
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and CT). For models that included both family income and parental education, there were
1099 children with complete data.

First, we examined SES x age2 interactions for mean CT and total SA using SAS software, as
described above. Then, we used the PING data portal (http://pingstudy.ucsd.edu) to examine
vertex-based regional specificity [52]. FDR correctionwas conducted at the .05 level. Based on
prior studies [11, 33, 53], we also took an ROI approach and examined interactions in the left
fusiform gyrus, left IFG, and left STG, which have been functionally and structurally associated
with language and literacy [42]. For these three regions, we applied a Bonferroni correction
and thus the p-level was set at .017 (.05/3). Because age-related patterns of change in cortical
structure vary regionally [23, 28], we considered whether age was linearly or quadratically
related to morphometry in each of these regions. When age2 was a significant predictor in the
models, we examined the SES x age2 interaction term. When age2 was not significant, it was
not included in the final model, and we examined the SES x age interaction instead.

To estimate effect size, we computed Cohen’s f2 [54], which is an effect size used to estimate
the proportion of explained (vs. unexplained) variation uniquely accounted for by an indepen-
dent variable over and above that accounted for by all other variables in the model [55].
Cohen’s f2 is interpreted by convention in terms of small (.02), medium (.15), or large (.35)
effects [55].

Results

Family Income, Age, andMean CorticalThickness
Initial analyses revealed that models of mean CT were best fit using a quadratic function for
age. We next assessed whether family income moderated the quadratic relationship between
age and CT. Indeed, there was a significant family income x age2 interaction for mean CT,
independent of family income, age, age2, family income x age, sex, GAF, and scanner/site (β =
-.05, p = .0044, Cohen’s f2 = .02; see Table 2). Given that there were no significant GAF x family
income interactions, these interactions were not included in the final model. As shown in Fig
1A, family income moderated the curvilinearityof the relationship of age to CT. Specifically, at
low levels of family income, the relationship between and to CT is strongly curvilinear. As fam-
ily income increased, the relationship between age and CT became increasingly linear.

Table 2. Family incomeby age2 interaction for average cortical thickness.

β t p

Sex .07 2.13 .0337

GAFAfrican -.06 -2.77 .0058

GAFAmerican Indian -.05 -2.59 .0098

GAF East Asian -.09 -4.52 < .0001

GAFOceanic -.06 -3.37 .0008

GAFCentral Asian -.05 -2.79 .0053

Family income .03 1.53 .1272

Age -.78 -44.41 < .0001

Age2 .09 5.23 < .0001

Family income x age -.01 -.79 .4319

Family income x age2 -.05 -2.85 .0044

Note. Multilevel modelingwas used to control for the nesting of childrenwithin scanners/sites.

GAF, genetic ancestry factor.

doi:10.1371/journal.pone.0162511.t002
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Post-hoc probing of significant interaction
Probing of this significant interaction (depicted in Fig 1A) was conducted using several meth-
ods [56, 57]. First, simple regression equations were computed showing the regression of CT

Fig 1. Family incomesignificantlymoderatednon-linear age-related differences inmean cortical
thickness (N = 1138). (a)Associations between age and average cortical thickness at low, middle, and high
levels of family income. All analyses were performedusing continuous variables for child age, family income,
and cortical thickness, but are displayed in ecologically-valid family income groups ($4,500 - $25,000 in blue,
$35,000 - $75,000 in green, and $125,000 - $325,000 in red). (b) The family income x age2 interaction for
mean cortical thickness was mapped to visualize regional specificity. Although none of the associations
survived FDR correction, regions significant at the .001 level are depicted here in light blue. These are
regionswhere there is less curvilinearity in the association between age andmean cortical thickness with
increasing family income.

doi:10.1371/journal.pone.0162511.g001
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on age and age2 at different levels of family income. The linear trend in the relationship of age
to CT was similarly strong and negative across ecologically-valid levels of family income (low-
income [$4,500-$25,000]; middle income [$35,000-$75,000], and high income [$125,000-
$325,000]), β = -.77 to -.79, p< .001. Across income groups, CT tended to decrease with age
across childhood and adolescence. However, the curvilinearityof this decrease varied by family
income. Specifically, the regression of CT on age2 differed across levels of family income, β =
.16 (p< .001) at low income, β = .11 (p< .001) at middle income, and β = .03 (ns) at high
income.

Simple slopes were computed to estimate the linear association between age and CT at vary-
ing levels of both age and family income. For low family income, the steepness of the slope of
CT on age decreased considerably with age, from -1.09 at 7 years, to -.77 at 12 years, and then
-.44 at 17 years. Similarly, for middle family income, the steepness of the slope was -.99 at 7
years, -.78 at 12 years, and -.56 at 17 years. However, for high family income, the steepness of
the slope of CT on age did not decreasemuch with age, from -.85 at 7 years, to -.79 at 12 years,
to -.74 at 17 years. All of these slopes were significantly different from zero (p< .001). Taken
together, these analyses provide statistical confirmation of the effects shown in Fig 1A.

Figs 1A and 2A show that before approximately age 18, children from more advantaged
socioeconomicbackgrounds tend to have thicker cortices, whereas after age 18, children from
lower socioeconomicbackgrounds tend to have thicker cortices.We therefore examined family
income-related differences in mean CT in separate models for individuals who were younger
and older than 18 years. Specifically, in each model, mean CT was regressed on family income
as well as the covariates included in prior analyses (i.e., age, age2, sex, GAF, and scanner). In
participants younger than 18 years (n = 926), individuals from lower-income families had
lower mean CT compared to those from higher-income families (β = .008, p = .04). For those
18 years or older (n = 173), family income-related differences in mean CT were not significant,
likely due to the reduced sample size in that group.

Regional specificity
We next visualized the model to assess vertex-wise regional specificity of the family income x
age2 interaction. When adjusting for all of the same covariates (i.e., family income, age, age2,
family income x age, sex, GAF, and scanner), none of these associations survived FDR correc-
tion at the .05 level. However, based on prior work [11, 33], we hypothesized that SES would
moderate age-related changes in CT in three cortical regions that support language and reading
development: the left fusiform gyrus, left IFG, and left STG. As shown in Table 3, family
income significantly moderated the age-related curvilinearityof cortical thinning in the left
fusiform gyrus (β = -.08, p = .0009; Cohen’s f2 = .02). The pattern in the left fusiform gyrus
showed the same pattern as was found for mean CT, with more curvilinearityof the relation-
ship between age and CT at lower levels of family income.

Age2 was not a significant predictor of left STG CT, and therefore this variable was not
included in the final model for this region (see Table 3). Family income significantly moderated
linear age-related change in thickness of the left STG (β = -.06, p = .0145; Cohen’s f2 = .02), in a
similar pattern to the left fusiform gyrus but without the curvilinearity. That is, at younger
ages, higher family income was associated with a thicker cortex. Additionally, higher family
income was linked with a more pronounced decline in CT with age. Thus, by mid- to late-ado-
lescence, individuals from higher income families showed a thinner cortex in this region.

To inform future hypothesis generation, exploratory analyses across the entire cortex were
conducted. Regions in which the family income x age2 interaction is significant when thre-
sholded at the .001 level are presented in Fig 1B. In the left hemisphere, these included the
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fusiform gyrus, inferior temporal gyrus, isthmus cingulate, and posterior cingulate. In the right
hemisphere, these included the fusiform gyrus, superior temporal gyrus, superamarginal gyrus,
middle temporal, inferior temporal and postcentral gyrus.

Fig 2. Parental educationsignificantlymoderatedage2 for mean cortical thickness (N = 1148). (a)
Associations between age and average cortical thickness at low, middle, and high levels of parental
education. All analyses were performed using continuous variables for child age, parental education, and
cortical thickness, but are displayed with parental education represented in ecologically-valid groups (less
than a high school degree [6–11 years] in blue, high school or some college [12–14 years] in green, and
4-year college graduate or professional degree [16–18 years] in red). (b) The parental education x age2

interaction was mapped to visualize regional specificity. Although none of the associations survived FDR
correction, regions significant at the .001 level are presented here in light blue.

doi:10.1371/journal.pone.0162511.g002
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Parental Education, Age, and Mean CorticalThickness
We next assessed whether parental education moderated the quadratic relationship between
age and mean CT. As with family income, there was a significant parental education x age2

interaction for mean CT after adjusting for parental education, age, age2, sex, GAF, scanner/
site, and parental education x age (β = -.05, p = .0028, Cohen’s f2 = .02; see Table 4). Given that
there were no significant GAF x parental education interactions, these interactions were not
included in the final model. The pattern of associations for this significant interaction closely
resembled that of the family income x age2 interaction (Fig 2A). Specifically, at low levels of
parental education, the association between age and CT was strongly curvilinear, but at higher
levels of parental education the association becomes increasingly linear. Children of lower- and
middle-educated parents show steep decreases in CT at younger ages, but then age-related cor-
tical thinning slows by mid-adolescence. In contrast, children of highly educated parents show
more gradual decreases in CT at younger ages, with continued evidence of cortical thinning
through late adolescence.

Table 3. Family incomex age2 interactions for cortical thickness of left hemisphere language regions.

Left fusiformgyrus Left IFG Left STG

Β t p β t p β t p

Sex .07 1.63 .1028 .06 1.45 .1476 -.03 -.55 .5850

GAFAfrican -.08 -2.81 .0050 .03 1.08 .2793 .01 .34 .7335

GAFAmerican Indian -.06 -2.28 .0231 -.03 -1.34 .1797 -.08 -2.87 .0042

GAF East Asian -.10 -3.40 .0007 -.07 -2.56 .0106 -.11 -3.41 .0007

GAFOceanic -.07 -2.58 .0101 -.02 -.84 .4009 -.11 -3.81 .0001

GAFCentral Asian -.07 -3.20 .0014 -.05 -2.33 .0198 -.06 -2.43 .0152

Family income .03 1.13 .2586 .05 1.88 .0607 .03 1.22 .2225

Age -.58 -23.91 < .0001 -.65 -28.83 < .0001 -.47 -17.63 < .0001

Age2 .05 2.04 .0415 .08 3.65 .0003 — — —

Family income x age -.004 -.19 .8515 -.03 -1.26 .2076 -.06 -2.45 .0145

Family income x age2 -.08 -3.34 .0009 -.03 -1.25 .2123 — — —

Note. IFG, inferior frontal gyrus; STG, superior temporal gyrus. Age2 was not significant for the left STG and thus was not included in these analyses.

doi:10.1371/journal.pone.0162511.t003

Table 4. Parental education by age2 interaction for average cortical thickness.

β t p

Sex .06 1.74 .0824

GAFAfrican -.06 -2.99 .0029

GAFAmerican Indian -.06 -3.04 .0024

GAF East Asian -.09 -4.60 < .0001

GAFOceanic -.07 -3.60 .0003

GAFCentral Asian -.05 -2.83 .0047

Parental education .02 1.11 .2674

Age -.77 -43.72 < .0001

Age2 .10 5.69 < .0001

Parental education x age -.01 -.39 .6986

Parental education x age2 -.05 -3.00 .0028

Note. Multilevel modelingwas used to control for the nesting of childrenwithin scanners/sites.

GAF, genetic ancestry factor.

doi:10.1371/journal.pone.0162511.t004
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Post-hoc probing of significant interaction. Probing of this significant interaction
(depicted in Fig 2A) was conducted using the same methods as those described above [56].
First, simple regression equations indicated that the linear trend in the relationship of age to
CT was similarly strong and negative across ecologically-valid levels of parental education (less
than a high school degree [6–11 years of education], high school or some college [12–14 years
of education] and 4-year college graduate or professional degree [16–18 years of education]),
β = -.74 to -.78, p< .001. Thus, across levels of parental education, CT tends to decrease with
age throughout childhood and adolescence. However, the curvilinearityof this decrease varied
by parental education. Specifically, the regression of CT on age2 differed across levels of paren-
tal education, β = .25 (p< .001) at low educational attainment, β = .14 (p< .001) at middle
educational attainment, and β = .06 (p< .05) at high educational attainment.

Second, simple slopes indicated that for low parental education, the steepness of the slope of
CT on age decreased considerably with age, from -1.25 at 7 years, to -.74 at 12 years, and then
-.23 at 17 years. Similarly, for middle parental education, the steepness of the slope was -1.05 at
7 years, -.76 at 12 years, and -.48 at 17 years. However, for high parental education, the steep-
ness of the slope of CT on age did not decreasemuch with age, from -.89 at 7 years, to -.78 at
12 years, to -.67 at 17 years. All of these slopes were significantly different from zero (p< .05 to
.001). Taken together, these analyses provide statistical confirmation of the appearance of Fig
2A. Additional post-hoc probing of the interaction revealed that there were no significant dif-
ferences in CT across ecologically-validparental education groups for individuals who were
younger and older than 18 years.

Regional specificity. We then created maps to visualize the model to assess vertex-wise
regional specificity of the parental education x age2 interaction. After adjusting for all the same
covariates (i.e., parental education, age, age2, scanner, sex, GAF, and parental education x age),
none of these associations survived FDR correction at the .05 level. We again examined
whether this interaction was significant in our hypothesized ROIs. Indeed, as with family
income, parental education significantly moderated quadratic age-related decreases in CT in
the left fusiform gyrus (β = -.06, p = .0131; Cohen’s f2 = .02; see Table 5). The pattern in the left
fusiform gyrus showed the same pattern as was found for mean CT, with more curvilinearityof
the relationship of age to CT at lower levels of parental education.

Table 5. Parental education x age2 interactions for cortical thickness of left hemisphere language regions.

Left fusiformgyrus Left IFG Left STG

Β t p β t p β t p

Sex .06 1.32 .1882 .06 1.41 .1600 -.03 -.59 .5854

GAFAfrican -.07 -2.62 .0089 .01 .59 .5553 .01 .45 .6543

GAFAmerican Indian -.07 -2.44 .0150 -.05 -1.85 .0646 -.08 -2.80 .0052

GAF East Asian -.11 -3.76 .0002 -.08 -2.97 .0030 -.10 -3.39 .0007

GAFOceanic -.07 -2.53 .0115 -.02 -.87 .3851 -.11 -3.73 .0002

GAFCentral Asian -.08 -3.33 .0009 -.05 -2.17 .0305 -.06 -2.42 .0156

Parental education .04 1.47 .1422 .02 .81 .4209 .08 2.68 .0075

Age -.57 -22.99 < .0001 -.65 -28.41 < .0001 -.46 -17.05 < .0001

Age2 .06 2.56 .0107 .08 3.45 .0006 — — —

Parental education x age -.01 -.22 .8244 -.04 -1.69 .0910 -.07 -2.92 .0036

Parental education x age2 -.06 -2.48 .0131 -.03 -1.33 .1825 — — —

Note. IFG, inferior frontal gyrus; STG, superior temporal gyrus. Age2 was not significant for the left STG and thus was not included in these analyses.

doi:10.1371/journal.pone.0162511.t005
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Given that age2 was not a significant predictor of left STG CT, this variable was not included
in the final model for this region. Parental education significantly moderated linear age-related
change in the thickness of the left STG (β = -.07, p = .0036; Cohen’s f2 = .02; see Table 5), in a
pattern that was similar to that of family income in this region. Specifically, higher parental
education was associated with a thicker cortex in left STG at younger ages. Additionally, higher
parental education was also linked with a steeper decline in CT with age, such that by late ado-
lescence individuals from highly educated families had thinner cortices in this region.

Exploratory analyses across the entire cortex were conducted. Regions in which the parental
education x age2 interaction is significant when thresholded at the .001 level are presented in
Fig 2B. For the left hemisphere, these included the lateral orbital frontal cortex and fusiform
gyrus. For the right hemisphere, these included the superior temporal gyrus, superamarginal
gyrus, postcentral gyrus, lateral orbital frontal cortex, and inferior frontal gyrus.

SES, Age, and Total CorticalSurface Area
There were no significant family income x age2 or parental education x age2 interactions for
total SA. As reported previously [4], there were significant main effects for family income,
parental education, age, and age2. Fig 3A and 3B show the association between age and total SA
for high, middle, and low levels of family income and parental education, respectively. As can
be seen in these figures, the same curvilinear relationship between total SA and age is observed
at each level of SES.

SES, Age, and Hippocampal and Amygdala Volumes
Neither family income nor parental education moderated quadratic relations between age and
either hippocampal or amygdala volumes. Previous work has found that SES moderates age-
related decreases in hippocampal volume, but not amygdala volume, among older adults [32].

Fig 3. Associations between age and total cortical surface area at low, middle, and high levels of (a) family income and (b) parental education.

doi:10.1371/journal.pone.0162511.g003
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Discussion
The present study investigated whether nonlinear age-related changes in CT and SA varied by
SES, as indexed by family income and parental education. Results indicate that children from
different SES backgrounds show different patterns of age-related change in CT but not SA.
Consistent with previous research, in the sample overall, CT decreasedwith age. However, the
association between age and CT was more curvilinearat lower levels of SES. Among lower SES
children, CT declined steeply at young ages, followed by a more moderate decline, and then
began to plateau in late adolescence. In comparison, among higher SES children, CT decreased
at a steady rate throughout childhood and continued to decline at least through late adoles-
cence, without plateauing.

In a vertex-based analysis, this interaction between age2 and SES did not show regional
specificity at FDR levels of correction, likely because of the small effect size for the interaction.
However, based on previous research [11, 41], analyses were conducted that focused on regions
of interest in left hemisphere cortical regions supporting language and literacy. For one of these
regions, the left fusiform gyrus, SES significantly moderated nonlinear CT development, in a
pattern similar to that described above. In another of these regions, the left STG, there was not
a significant quadratic component to age-related change in CT; rather, the thickness of this
region declined linearly with age. Our results indicate that SES significantly moderated this
age-related change in CT, such that higher SES was linked with a steeper decline in CT with
age.

To our knowledge, this is the first study to examine the impact of SES on nonlinear age-
related changes in cortical structure. Previous studies have demonstrated that higher SES is
associated with greater CT in children. Specifically, in a study of 4- to 18-year-olds, higher
parental education was associated with greater CT in prefrontal regions [29]. In a study of 13-
to 15-year-olds, higher family income was associated with greater CT across all lobes of the
brain [30]. Consistent with these findings, our results indicate that for the majority of child-
hood, higher SES does appear to be linked with greater CT, possibly due to a steeper rate of cor-
tical thinning in children from lower-SES families early in childhood.However, this trajectory
then changes in adolescence, when lower SES children begin to plateau and thus their CT stays
at a higher level compared to higher SES children, for whom CT continues to decline.

SES may moderate patterns of cortical thinning in the left fusiform gyrus and the left supe-
rior temporal gyrus (STG), consistent with previous research showing SES differences in the
structural development of language and literacy regions [41]. In fact, another study, focusing
on children at-risk for reading impairment, reported that SES moderated the relationship
between phonological language skills and reading-related brain activity in left fusiform and
perisylvian regions. Specifically, among disadvantaged children, there was a strong association
between language skill and activation in those regions during a reading task. However, as fam-
ily SES increased, the association between language skill and activation in those areas was
attenuated [11]. The left STG largely supports phonological processing, while the left fusiform
gyrus supports visual word recognition [58–61]. Both of these are critical aspects of literacy
development, which is an area of particular vulnerability for low-SES children. Indeed, some of
the largest SES disparities are found in the language and literacy domain compared to other
neurocognitive domains [62]. Thus, the current research may shed light on the underlying neu-
rodevelopmental processes that may partially explain these differences.

These findings may reflect an abbreviated period of cortical thinning in lower SES environ-
ments, relative to a more prolonged period of cortical thinning in higher SES environments. It
is possible that socioeconomicdisadvantage is a proxy for experiences that result in a faster
pace of cortical thinning (given the earlier plateau), whereas socioeconomicadvantage allows
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for a longer window for this aspect of structural brain development to take place. It has been
suggested that early adversity may narrow the sensitive period or time window for certain
aspects of brain development that are malleable to environmental influences, thereby accelerat-
ing maturation [63, 64]. This phenomenon could potentially explain the pattern we report
here, with children from more socioeconomicallydisadvantaged environments showing
steeper age-related differences earlier in childhood, followed by a leveling off of thinning in
adolescence, which is not observed in their higher SES peers.

There are some suggestions in the literature about the implications of individual differences
in rates and patterns of cortical thinning over time. Some of this research has focused on the
associations between rates of cortical thinning and general cognitive development (e.g., intelli-
gence, IQ), which are complex and not yet well-understood.Greater cortical thinning has been
related to increases in vocabulary [27] and improvements in cognitive and emotional control
during adolescence [65–67], consistent with the direction of associations shown for adolescents
in the present research. In addition, in a recent longitudinal study, greater early environmental
stimulation in the home (at age 4) significantly predicted reduced CT in prefrontal and tempo-
ral regions in young adulthood, a finding which is consistent with results for older adolescents
in the current study [68]. However, optimal rates of cortical thinning and levels of CT likely
differ depending on variables such as the developmental period and brain region [19, 38, 69,
70]. Higher intelligence has also been associated with later timing of maturational changes
[38]. It is possible, then, that the relatively prolonged thinning we find among children from
higher socioeconomic families may in part account for widely-reported socioeconomicdispari-
ties in cognitive development and academic achievement.

Changes in CT may be due in part to synaptic pruning [25, 71, 72], which has been linked
with the level and quality of stimulation in the environment [1, 3, 73]. High levels of stimula-
tion strengthen synaptic connections, whereas low levels of stimulation may lead to excessive
pruning. Further, the developmental timing of pruning is critical; pruning connections earlier
in development that may be needed for future function would be counterproductive [24, 74,
75]. One possibility is that lower SES environments, which are often characterized by reduced
cognitive and linguistic stimulation in and out of the home (e.g., [76]), may lead to greater
pruning and thus reduced CT earlier in childhood.Changes in CT have also been linked with
gliogenesis and increases in white matter myelination. Gliogenesis has been found to occur as a
consequence of learning and experience [77] and is considered an important candidate mecha-
nism for experience-related changes in gray matter morphology [78].

Both parental education and family income moderated age-related changes in CT. In previ-
ous studies, these two SES indices have been found to make distinct contributions to develop-
mental outcomes [39]. Researchers have conjectured that family income may more directly
reflect the physical resources available to the family in terms of enrolling the child in high-qual-
ity schools and providing enriching experiences. Parental education may more directly reflect
parenting style and the quality of parent-child interactions [79]. Both of these dimensions of
the environment have been linked with brain development [5], consistent with the present
research.

In addition to the novelty of the research question, this study had a number of methodologi-
cal strengths. The PING sample is one of the largest datasets available to date for neuroimaging
research on brain development. In addition, our analyses were conservative in terms of ensur-
ing parameter estimates were not inflated due to violating statistical assumptions, and analyses
included a comprehensive set of covariates (e.g., sex, genetic ancestry, scanner/site). The inclu-
sion of genetic ancestry, in particular, improves upon most prior studies of SES and brain
development, because it more definitively rules out (genetic) race as a confounding factor.
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This study also had limitations that should be kept in mind when interpreting the findings.
The cross-sectional and non-experimental design of this study precludes any strong conclu-
sions about causation. Analyzing cross-sectional data also has limitations in terms of drawing
inferences about developmental processes [28, 80]. Longitudinal designs assessing within-sub-
ject change are necessary to supplement our findings for brain structure development. Because
of the lack of longitudinal data, we were unable to address whether differences in rates and pat-
terns of cortical thinning were associated with variability in cognitive outcomes. This study
was also restricted to distal SES indices, specifically family income and parental education, in
terms of moderating variables. It is important that future research examine the role of more
proximal SES-related environmental factors, such as home environment and neighborhood
quality, to further pinpoint the factors that may influence structural brain development.

Conclusion
In sum, findings from this study indicated that age-related change in CT varies by SES, espe-
cially in regions supporting language and literacy. The curvilinearityof the association between
age and CT decreased as SES increased, such that CT began to plateau during late adolescence
for lower SES children but not higher SES children. Environmental differences associated with
SES may influence aspects of structural brain development during childhood and adolescence.
These results may contribute to our understanding of the neural mechanisms underlying socio-
economic disparities in cognitive development, and inform the design of effective prevention
and intervention strategies which reduce these disparities.
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