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Abstract

Genome-wide polygenic scores for educational attainment (PGS-EA) and socioeco-

nomic factors, which are correlated with each other, have been consistently associ-

ated with academic achievement and general cognitive ability in children and

adolescents. Yet, the independent associations of PGS-EA and socioeconomic factors

with specific underlying factors at the neural and neurocognitive levels are not well

understood. The main goals of this study were to examine the unique contributions

of PGS-EA and parental education to cortical structure and neurocognitive skills in

children and adolescents, and the associations among PGS-EA, cortical structure, and

neurocognitive skills. Participants were typically developing 3- to 21-year-olds (53%

male; N = 391). High-resolution, T1-weighted magnetic resonance imaging data were

acquired, and cortical thickness (CT) and surface area (SA) were measured. PGS-EA

were computed based on the EA3 genome-wide association study of educational

attainment. Participants completed executive function, vocabulary, and episodic

memory tasks. Higher PGS-EA and parental education were independently and sig-

nificantly associated with greater total SA and vocabulary. Higher PGS-EA was signif-

icantly associated with greater SA in the left medial orbitofrontal gyrus and inferior

frontal gyrus, which was associated with higher executive function. Higher parental

education was significantly associated with greater SA in the left parahippocampal

gyrus after accounting for PGS-EA and total brain volume. These findings suggest

that education-linked genetics may influence SA in frontal regions, leading to variabil-

ity in executive function. Associations of parental education with cortical structure in

children and adolescents remained significant after controlling for PGS-EA, a source

of genetic confounding.
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1 | INTRODUCTION

Elucidating genetic and environmental influences on brain develop-

ment in children and adolescents is an important task for researchers.

Recent scientific advances allowing the computation of genome-wide

polygenic scores have led to ground-breaking insights into genetic

effects on cognitive and health outcomes (Armstrong-Carter

et al., 2021; Plomin & von Stumm, 2018). Polygenic scores are derived

using genome-wide association studies (GWAS) by aggregating the

contributions of all known genetic variants associated with the pheno-

type of interest (Plomin & von Stumm, 2018). GWAS have identified

genetic variants robustly associated with educational attainment

(years of education) and led to genome-wide polygenic scores for edu-

cational attainment (PGS-EA) that significantly predict years of educa-

tion (Lee et al., 2018; Okbay et al., 2016, 2022; Rietveld et al., 2013),

academic achievement (Selzam et al., 2017; von Stumm et al., 2020;

Ward et al., 2014), and general cognitive ability (Allegrini et al., 2019;

Belsky et al., 2016; Judd et al., 2020; Wertz et al., 2018) in indepen-

dent samples. However, the associations between PGS-EA and the

underlying factors at the neural and neurocognitive levels in children

and adolescents are not well understood.

Building from decades of research demonstrating socioeconomic

disparities in cognitive development (McLoyd, 1998), recent studies

have shed light on the neural mechanisms underlying these associa-

tions (Farah, 2017). Socioeconomic factors, such as parental education

and family income, have been repeatedly associated with brain struc-

ture in children and adolescents (Farah, 2017; McDermott

et al., 2019; Noble et al., 2015; Noble & Giebler, 2020). Socioeco-

nomic factors represent distal markers of aspects of children's envi-

ronments that influence their development (Merz et al., 2020; Troller-

Renfree et al., 2022). Yet, the environments in which children are

raised are associated with the genotypes they inherit from their par-

ents (i.e., gene–environment correlation) (Plomin et al., 2016). In one

example of a passive gene–environment correlation, more educated

parents provide both a genetic propensity for higher educational

attainment and cognitively stimulating home environments to their

children. Indeed, the associations between socioeconomic factors and

children's academic achievement may be partially attributable to

genetic transmission (Belsky et al., 2016, 2018; Krapohl &

Plomin, 2016; von Stumm et al., 2020). However, the unique role of

socioeconomic factors in predicting the underlying neural and neuro-

cognitive measures independent of genetic factors is not well under-

stood. As such, the first main goal of this study was to examine the

independent associations of PGS-EA and parental education with cor-

tical structure and neurocognitive skills in children and adolescents.

1.1 | PGS-EA and cortical structure

In recent years, researchers have leveraged GWAS techniques to

investigate the genetics of educational attainment (Lee et al., 2018;

Okbay et al., 2016, 2022; Rietveld et al., 2013). Educational attain-

ment is a demographic measure collected in most studies, allowing

large studies to be conducted on this phenotype. A recent GWAS

(EA3) included data from over a million adults of European ancestry

and identified 1271 significant single-nucleotide polymorphisms

(SNPs) (Lee et al., 2018). A polygenic score derived from the results

explained up to 13% of the variance in educational attainment in inde-

pendent samples (Lee et al., 2018).

To our knowledge, only two neuroimaging studies to date have

focused on PGS-EA and cortical structure in children and adolescents.

In one study, PGS-EA were significantly positively associated with

total brain volume in a large sample of 10-year-olds (Alemany

et al., 2019). Cortical volume is a composite of cortical surface area

(SA) and cortical thickness (CT), which are genetically, developmen-

tally, and phenotypically independent (Panizzon et al., 2009; Raznahan

et al., 2011; Winkler et al., 2010). In a study that examined SA and CT

separately, PGS-EA were significantly positively associated with global

SA but not significantly associated with global CT in adolescents (Judd

et al., 2020). In addition, PGS-EA were significantly associated with

regional SA in the right intraparietal sulcus (Judd et al., 2020).

1.2 | Socioeconomic factors and cortical structure

Numerous studies have revealed associations between socioeconomic

factors and cortical structure in children and adolescents

(Farah, 2017; Noble & Giebler, 2020). In these studies, higher parental

education and family income have been significantly associated with

greater SA (Judd et al., 2020; McDermott et al., 2019; Noble

et al., 2015) and CT (Lawson et al., 2013; Mackey et al., 2015;

McDermott et al., 2019; Romeo et al., 2018). These socioeconomic

differences in cortical structure have been found to be most promi-

nent in frontal and temporal regions crucial to language, executive

function, and memory (McDermott et al., 2019; Noble et al., 2015).

Yet, to our knowledge, only one study has examined associations

between socioeconomic factors and cortical structure while control-

ling for PGS-EA in children and adolescents. In this study, parental

education remained significantly positively associated with total SA

after controlling for PGS-EA in adolescents (Judd et al., 2020).

1.3 | PGS-EA, socioeconomic factors, and
neurocognitive skills

Although multiple studies have demonstrated associations between

PGS-EA and general cognitive ability (Plomin & von Stumm, 2018), a

smaller body of work has shown associations between PGS-EA and

specific neurocognitive skills that underlie general cognitive ability.

PGS-EA has been significantly associated with vocabulary, executive

function (inhibitory control, working memory), and episodic memory

in children and adolescents (Domingue et al., 2015; Judd et al., 2020;

Loughnan et al., 2021; Rea-Sandin et al., 2021).

In a largely separate literature, greater family income and parental

education have been significantly associated with higher levels of

these neurocognitive skills (Lawson et al., 2017; Merz et al., 2019;
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Noble et al., 2005, 2007). Only a few studies have examined associa-

tions between socioeconomic factors and neurocognitive skills while

controlling for PGS-EA in children and adolescents. For example,

parental education was positively and significantly associated with

working memory in adolescents, even when controlling for PGS-EA

(Judd et al., 2020). In addition, family income remained significantly

associated with associative memory in children while accounting for

PGS-EA (Raffington et al., 2019). However, the independent associa-

tions of PGS-EA and socioeconomic factors with neurocognitive skills

in children and adolescents are not well understood.

1.4 | Current study

The main goals of this study were to examine (1) the independent

associations of PGS-EA and parental education with cortical structure

and neurocognitive skills and (2) the associations among PGS-EA, cor-

tical structure, and neurocognitive skills in children and adolescents.

Participants were typically developing 3- to 21-year-olds (N = 391 for

analyses of PGS-EA and neuroanatomy). High-resolution,

T1-weighted MRI data were acquired, and vocabulary, executive func-

tion, and episodic memory were measured. PGS-EA were computed

using results from a recent GWAS of educational attainment (Lee

et al., 2018). We conducted analyses of global measures of CT and SA

and vertex-wise analyses of regional CT and SA. Parental education

and family income were examined separately (rather than combined

into an SES composite) because they have been associated with dis-

tinct aspects of children's environments and relate differentially to

children's development (Duncan & Magnuson, 2012). While the main

analyses focus on parental education, results for family income are

presented in the supplemental material.

We hypothesized that PGS-EA and parental education would be

independently associated with SA and possibly CT. Based on previous

research (McDermott et al., 2019; Mitchell et al., 2020; Noble

et al., 2015), we expected these associations to be most pronounced

in frontal and temporal cortical regions. We also hypothesized that

both PGS-EA and parental education would uniquely contribute to

vocabulary, executive function, and episodic memory. Cortical struc-

ture was predicted to mediate associations between PGS-EA and

these neurocognitive skills. More specifically, we hypothesized that

SA in lateral PFC regions would mediate the association between

PGS-EA and executive function (Bari & Robbins, 2013). SA in left

hemisphere language regions (e.g., left inferior frontal gyrus, left supe-

rior temporal gyrus) was expected to mediate the association between

PGS-EA and vocabulary (Friederici, 2011).

Some research has suggested gene-by-SES interactions may pre-

dict cognitive ability such that the heritability of intelligence is lower

in lower SES family environments and higher in higher SES family

environments (Tucker-Drob & Bates, 2016). Thus, we also examined

interactions between socioeconomic factors and PGS-EA in predicting

cortical structure and neurocognitive skills. In addition, based on pre-

vious work (Rabinowitz et al., 2020; Rea-Sandin et al., 2021), we

examined whether there were significant interactions between PGS-

EA and age for cortical structure and neurocognitive skills. We also

examined interactions between socioeconomic factors and age, con-

trolling for PGS-EA, in the prediction of cortical structure and neuro-

cognitive skills.

2 | METHODS

2.1 | Participants

Data were obtained from the Pediatric Imaging, Neurocognition and

Genetics (PING) study (http://ping.chd.ucsd.edu/) (Jernigan

et al., 2016). The PING study is a large-scale, publicly available data

set for investigating neuroimaging, cognition and genetics in typically-

developing children and adolescents (Jernigan et al., 2016). Exclusion-

ary criteria in the PING study included neurological disorders; history

of head trauma; preterm birth; diagnosis of an autism spectrum disor-

der, bipolar disorder, schizophrenia, or significant intellectual disabil-

ity; and contraindications for MRI (Jernigan et al., 2016).

In total, the PING study included cross-sectional data collected

from nine different sites across the United States. Participants in the

current study ranged from 3 to 21 years of age (M = 11.53,

SD = 4.82), and 53% were male. Family income ranged from $4500 to

$325,000 (M = 121,290.35, SD = 76,743.49); parental education ran-

ged from 8 to 18 years (M = 15.73; SD = 1.86).

Written informed consent was provided by parents for all partici-

pants younger than 18 years of age and by the participants them-

selves if they were 18 years or older. Child assent was obtained for 7-

to 17-year-old participants. Each site's Institutional Review Board

approved the study.

2.2 | Socioeconomic factors

Educational attainment was averaged across parents. Both education

and income data were originally collected in bins, which were recoded

as the means of the bins for analysis, following from previous work

(Noble et al., 2015). Family income was log-transformed to correct for

positive skew. Family income and parental education were signifi-

cantly correlated, r = .56, p < .0001.

2.3 | Genomic data

The PING data set includes 550,000 SNPs genotyped from saliva sam-

ples using Illumina Human660W-Quad BeadChip. Computation of

polygenic scores followed steps similar to that of our previous study

(Khundrakpam, Vainik, et al., 2020). Steps included preparation of the

data for imputation using the “imputePrepSanger” pipeline (https://

hub.docker.com/r/eauforest/imputeprepsanger/) and implemented

on CBRAIN (Sherif et al., 2014) using Human660W-Quad_v1_A-

b37-strand chip as reference. The next step involved data imputation

with Sanger Imputation Service (McCarthy et al., 2016) using default
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settings and the Haplotype Reference Consortium, HRC (http://www.

haplotype-reference-consortium.org/) as the reference panel. Using

Plink 1.9 (Chang et al., 2015), the imputed SNPs were then filtered

with the inclusion criteria: SNPs with unique names, only ACTG, and

MAF > 0.05. All SNPs that were included had INFO scores R2 > 0.9

with Plink 2.0. Next, using polygenic score software PRSice 2.1.2

(Euesden et al., 2015) additional ambiguous variants were excluded,

resulting in 4,696,385 variants being available for polygenic scoring.

We filtered individuals with 0.95 loadings to the European principal

component (GAF_Europe variable provided with the PING data),

resulting in 526 participants. These participants were then used to

compute 10 principal components with Plink 1.9. Polygenic scores

based on the EA3 GWAS (Lee et al., 2018) were used in analyses. We

clumped the data as per PRSice default settings (clumping

distance = 250 kb, threshold r2 = 0.1).

PGS-EA were computed at different p-value thresholds for inclu-

sion of SNPs in the score (e.g., p < .001; p < .01; p < .05; p < .1; p < 1).

Then, the most predictive one was chosen, following previous studies

(Alemany et al., 2019; Du Rietz et al., 2018; Dudbridge, 2013;

Euesden et al., 2015; Judd et al., 2020). The p-value threshold of

p < 1 � 10�7 best explained variance in SA. Thus, this conservative p-

value threshold was used for the main analyses. After matching with

available variants in the data, this PGS-EA was based on 694 variants

(see Table S1). Results for PGS-EAs calculated based on other p-value

thresholds were consistent with the results reported.

2.4 | Image acquisition and preprocessing

Each site administered a standardized structural MRI protocol. Imag-

ing data were collected using 3-Tesla scanners manufactured by Gen-

eral Electric, Siemens, and Philips. The imaging protocols and pulse

sequence parameters used in the PING study have been published

previously (Jernigan et al., 2016; Merz et al., 2018; Noble et al., 2015).

T1-weighted images were acquired using a standardized high-

resolution 3D RF-spoiled gradient echo sequence (Jernigan

et al., 2016).

The raw T1-weighted imaging data for the PING study are pub-

licly shared (https://nda.nih.gov/) for a subset of the sample

(n = 934). The only difference between the full PING sample and the

subsample with raw T1-weighted imaging data was that the full PING

sample was older on average than the subsample (Khundrakpam,

Choudhury, et al., 2020). We used the CIVET processing pipeline

(https://mcin.ca/technology/civet/) developed at the Montreal Neu-

rological Institute to compute CT measurements at 81,924 regions

covering the entire cortex. Processing steps included nonuniformity

correction of the T1-weighted image and then linear registration to

the Talairach-like MNI152 template (created with the ICBM152 data

set). After repeating the nonuniformity correction using the template

mask, the nonlinear registration from the resultant volume to the

MNI152 template is computed, and the transform used to provide

priors to segment the image into gray matter, white matter, and cere-

brospinal fluid. Inner and outer gray matter surfaces are then

extracted using the Constrained Laplacian-based Automated Segmen-

tation with Proximities (CLASP) algorithm. CT is then measured in

native space using the linked distance between the two surfaces at

81,924 vertices. To impose a normal distribution on the corticometric

data and increase the signal to noise ratio, each individual's CT map

was blurred using a 30-mm full width at half maximum surface-based

diffusion smoothing kernel. Two independent reviewers performed

quality control of the data, and only scans with consensus of the two

reviewers were used. Exclusion criteria for quality control included:

data with motion artifacts, a low signal to noise ratio, artifacts due to

hyperintensities from blood vessels, surface-surface intersections, or

poor placement of the gray or white matter surface for any reason.

Of the 934 participants with raw T1-weighted MRI data, 29 par-

ticipants' data failed the quality control procedures. Of these

29, 13 participants' data were excluded before any processing due to

severe motion and slicing artifacts. The remaining 16 participants

failed the CIVET pipeline for reasons including the presence of bright

blood vessels and poor contrast. Thus, 905 participants passed the

quality control procedures (Khundrakpam, Choudhury, et al., 2020).

2.4.1 | Sample sizes

Of the 526 participants with polygenic score data, 391 had

T1-weighted neuroimaging data and 518 had neurocognitive task

data. Thus, 391 participants were included in analyses of associations

between PGS-EA and cortical structure, and 518 participants were

included in analyses of associations between PGS-EA and neurocogni-

tive skills. For analyses of PGS-EA, cortical structure, and neurocogni-

tive skills, data for 382 participants were available.

2.5 | Neurocognitive tasks

Participants completed tasks from the NIH Toolbox Cognition Battery

including the Flanker Inhibitory Control and Attention (Zelazo

et al., 2013), List Sorting Working Memory (Tulsky et al., 2013), Pic-

ture Sequence Memory (Bauer et al., 2013; Dikmen et al., 2014), and

Picture Vocabulary Tests (Gershon et al., 2013, 2014) (see Supple-

mental Materials). The Flanker and List Sorting Working Memory

tasks are measures of inhibitory control and working memory, respec-

tively, core components of executive function (Miyake et al., 2000),

and the scores on these tasks were strongly correlated (r = .76,

p < .0001). Thus, they were standardized (z-scored) and averaged to

create an executive function composite for data reduction purposes

and to create a more reliable measure of executive function.

2.6 | Statistical analyses

Multiple linear regression analyses in SAS (version 9.4) were con-

ducted using the general linear model procedure to examine associa-

tions of PGS-EA and parental education with global measures of SA
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(total SA) and CT (mean CT) and neurocognitive skills. We first investi-

gated whether PGS-EA and parental education were associated with

SA, CT, and neurocognitive skills in separate models. Then, we con-

ducted regression models in which they were both included as predic-

tors. Effect sizes (partial eta squared [ηp
2]) are presented, with values

of .01, .06, and .14 indicating small, medium, and large effects, respec-

tively (Cohen, 1988; Richardson, 2011). Interactions between socio-

economic factors and PGS-EA were not significant and, as such, were

not included in the final regression models.

Vertex-level neuroanatomical variables of interest included SA

and CT at each of 81,924 cortical vertices. To examine associations

between SA/CT and PGS-EA (or socioeconomic factors), general linear

models were conducted for each vertex for SA and CT using the Surf-

Stat toolbox (http://www.math.mcgill.ca/keith/surfstat/). At every

cortical point, the t-statistic for the association between cortical struc-

ture (SA, CT) and PGS-EA (or socioeconomic factors) was mapped

onto a standard cortical surface. Correction for multiple comparisons

using random field theory (RFT) (Worsley et al., 2004) was then

applied to the resultant map to determine the regions of cortex signifi-

cantly associated with PGS-EA (or socioeconomic factors). To identify

significant clusters, an initial height threshold of p < .001 was imple-

mented at the vertex level, and a corrected family-wise error (p < .05)

was then applied.

2.6.1 | Covariates

Covariates included in the regression models were age, age2, sex, and

scanner/site. In the PING study, 12 MRI scanners were used across

the nine data collection sites. Thus, analyses predicting cortical struc-

ture included scanner as a covariate, and analyses predicting neuro-

cognitive skills included site as a covariate. Also, to minimize the

chance of population structure explaining the polygenic score results,

we extracted 10 first principal components (PC10) and used them as

covariates. Without controlling for those principal components, ran-

dom differences in population genomic signature can explain out-

comes, if different populations also differ in the outcome (Price

et al., 2006). In addition, the main vertex-wise analyses also controlled

for total brain volume. Supplemental analyses not adjusting for total

brain volume are also presented based on current recommendations

(Mills et al., 2016; Vijayakumar et al., 2018) and to compare our

results with those of previous studies that did not control for global

measures (McDermott et al., 2019; Noble et al., 2015). There is cur-

rently no consensus on whether global measures should be included

in vertex-wise analyses of SA and CT (Tadayon et al., 2020).

2.6.2 | Mediation

Analyses were also conducted to investigate the extent to which cor-

tical structure may mediate associations between PGS-EA and neuro-

cognitive skills (see Figure S1). Analyses focused on CT or SA

measures found to be significantly associated with PGS-EA. We

investigated whether these neuroanatomical indices were associated

with neurocognitive skills in regression models. For any CT or SA mea-

sure found to be associated with both PGS-EA and a neurocognitive

outcome, analyses were conducted to examine whether that CT or SA

measure mediated the association between PGS-EA and the neuro-

cognitive outcome (MacKinnon et al., 2002). Mediation analyses were

conducted using bias-corrected bootstrapping via the PROCESS

macro in SAS, with a 95% confidence interval (CI) (Hayes, 2013;

Preacher & Hayes, 2008). The effect is significant when the confi-

dence interval does not include zero. To account for the association

between PGS-EA and CT/SA potentially biasing the mediation

(Kriegeskorte et al., 2009), mediation analyses were also conducted

using CT/SA in anatomically defined regions-of-interest (ROIs).

2.6.3 | Moderation

Significant interactions between PGS-EA or parental education and

age or age2 were probed using the PROCESS macro in SAS via the

Johnson-Neyman technique (Hayes, 2013). The Johnson-Neyman

technique identifies the points along the continuum of the moderator

where the conditional effect of X on Y transitions between statisti-

cally significant (α = .05) and not significant (Bauer & Curran, 2005;

Hayes, 2013). Significant interactions involving socioeconomic factors

were visualized using ecologically valid groups similar to previous

work (Piccolo et al., 2016). In this study, the low and middle parental

education groups were collapsed due to small sample size in the low

parental education group (n = 25), consistent with previous work

(Khundrakpam, Choudhury, et al., 2020). Thus, the following parental

education groups were used for visualization purposes: less than a

high school diploma, completion of high school, or some college (6–

14 years of education [n = 147]) and 4-year college graduate or pro-

fessional degree (16–18 years of education [n = 236]).

3 | RESULTS

3.1 | Descriptive statistics

Descriptive statistics and zero-order correlations are presented in

Table 1. PGS-EA was significantly correlated with parental education

(r = .21, p < .0001) and family income (r = .10, p = .03). PGS-EA data

were normally distributed.

3.2 | PGS-EA, parental education, and SA

3.2.1 | PGS-EA

Higher PGS-EA was significantly associated with greater total SA,

β = .11, p = .0083, ηp
2 = .0187, and remained significantly associated

with total SA after accounting for parental education, β = .09,

p = .0279, ηp
2 = .0134. Vertex-wise analyses indicated that PGS-EA
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were significantly (p < .05, RFT-corrected) associated with SA in two

clusters. The first cluster consisted primarily of vertices in the left

medial orbitofrontal gyrus and rostral ACC. The second cluster con-

sisted of vertices in the left inferior frontal gyrus (IFG), primarily pars

triangularis and pars orbitalis (see Figure 1 and Table 2). These associ-

ations remained significant after controlling for parental education

(see Figure 1 and Table 2). A consistent pattern of results was found

when examining PGS-EA computed at different p-value thresholds.

There were no significant interactions between PGS-EA and age or

age2 in the prediction of SA.

3.2.2 | Parental education

Higher parental education was significantly associated with greater

total SA, β = .13, p = .0022, ηp
2 = .0257, and remained significantly

associated with total SA after accounting for PGS-EA, β = .12,

p = .0076, ηp
2 = .0196. Vertex-wise analyses indicated that higher

parental education was significantly (p < .05, RFT-corrected) associ-

ated with greater SA in clusters in the left fusiform gyrus and right

superior temporal gyrus (see Figure 2 and Table 3). Parental education

was significantly associated with SA in a cluster in the left parahippo-

campal gyrus after controlling for PGS-EA (see Figure 2 and Table 3).

Vertex-wise analyses indicated a significant interaction between

parental education and age2 for SA in the left superior frontal gyrus

while controlling for PGS-EA and the other covariates (see Figure S2).

Higher parental education was associated with greater SA in the left

superior frontal gyrus between 18 and 21 years of age. There were no

significant interactions between parental education and age or age2 in

the prediction of total SA. Also, vertex-wise analyses indicated no sig-

nificant interactions between parental education and age for SA.

Vertex-wise analyses were conducted to examine associations of

PGS-EA and parental education with SA without controlling for total

brain volume. A similar pattern of results emerged but with significant

associations between parental education and SA in more cortical

regions (see Figures S3 and S4 and Tables S2 and S3).

3.3 | PGS-EA, parental education, and CT

3.3.1 | PGS-EA

PGS-EA was not significantly associated with global CT, β = .04,

p = .2195, or regional CT. There were no significant interactions

between PGS-EA and age or age2 in the prediction of CT.

3.3.2 | Parental education

Although parental education was not significantly associated with

global (β = .05, p = .1003) or regional CT in terms of main

effects, there was a significant interaction between parental edu-

cation and age in the prediction of mean CT after controlling for

age, age2, sex, scanner, PGS-EA, PC1-10, and parental education,

β = .08, p = .0274, ηp
2 = .0135 (see Figure S5). The Johnson-

Neyman technique indicated that higher parental education was

significantly associated with greater mean CT between 13 and

21 years of age.

Vertex-wise analyses indicated a significant interaction between

parental education and age for CT localized in the right IFG (primarily

pars orbitalis), right calcarine fissure, and right precuneus while con-

trolling for PGS-EA and the other covariates (see Figure S6). The

Johnson-Neyman technique indicated that for the right IFG, higher

parental education was significantly associated with lower CT

between 3 and 7 years of age and with greater CT between 14 and

21 years of age. For the right calcarine fissure, higher parental

TABLE 1 Descriptive statistics and zero-order correlations

1 2 3 4 5 6 7 8

1 PGS-EA —

2 Parental education

(years)

.21*** —

3 Total SA (mm2) .09+ .05 —

4 Global (average) CT

(mm)

.04 .10+ .22*** —

5 Vocabulary .03 .03 .10* �.52*** —

6 Inhibitory control �.03 �.03 .17*** �.48*** .72*** —

7 Working memory .001 �.003 .16** �.43*** .77*** .77*** —

8 Episodic memory .03 �.01 .04 �.49*** .70*** .70*** .76*** —

N 526 503 391 391 518 513 516 519

M (SD) .000043

(.000193)

15.73

(1.86)

200,523.00

(16,564.94)

3.11

(.17)

.89

(1.40)

7.63

(1.84)

17.95

(5.34)

26.22

(11.08)

Abbreviations: CT, cortical thickness; M, mean; PGS-EA, polygenic score for educational attainment; SA, cortical surface area.

Note: *p < .05; **p < .01; ***p < .001; + p < .10.

6 MERZ ET AL.



education was significantly associated with lower CT between 3 and

5 years of age and with greater CT between 12 and 21 years of age.

For the right precuneus, higher parental education was significantly

associated with lower CT between 3 and 9 years of age and with

higher CT between 16 and 21 years of age. There were no significant

interactions between parental education and age2 for CT.

F IGURE 1 Higher educational attainment polygenic scores (PGS-EA) were significantly associated with greater frontal cortical surface area
(SA) in children and adolescents (a) without adjusting for parental education and (b) while adjusting for parental education. The left and right
panels show t-statistics and p values (p < .05 after correcting for multiple comparisons using random field theory [RFT]), respectively. Covariates
were age, age2, sex, scanner, principal components 1–10, and total brain volume

TABLE 2 Educational attainment polygenic scores (PGS-EA) were significantly associated with cortical surface area (SA)

Cluster # Cluster-corrected p Cluster size (number of vertices) Cluster brain label

Without adjusting for parental education

1 .005 909 Left medial orbitofrontal gyrus, rostral ACC

2 .01 799 Left inferior frontal gyrus

After adjusting for parental education

1 .009 565 Left medial orbitofrontal gyrus, rostral ACC

2 .04 482 Left inferior frontal gyrus

Abbreviation: ACC, anterior cingulate cortex.

Note: Covariates were age, age2, sex, scanner, principal components 1–10, and total brain volume.
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3.4 | PGS-EA, parental education, and
neurocognitive skills

3.4.1 | PGS-EA

Higher PGS-EA was significantly associated with greater

vocabulary, executive function, and episodic memory (see

Table S4). PGS-EA remained significantly associated with

vocabulary and episodic memory after controlling for parental

education (see Table S4). A similar pattern of results was found

for PGS-EA computed at different p-value thresholds (see

Table S5). There were no significant interactions between

PGS-EA and age or age2 in the prediction of the neurocognitive

skills.

F IGURE 2 Higher parental education was significantly associated with greater cortical surface area (SA) in children and adolescents
(a) without adjusting for educational attainment polygenic scores (PGS-EA) and (b) while adjusting for PGS-EA. The left and right panels show t-
statistics and p values (p < .05 after correcting for multiple comparisons using random field theory [RFT]), respectively. Covariates were age, age2,
sex, scanner, and total brain volume. Models including PGS-EA also adjusted for principal components 1–10

TABLE 3 Parental education was significantly associated with cortical surface area (SA)

Cluster # Cluster-corrected p Cluster size (number of vertices) Cluster brain label

Without adjusting for PGS-EA

1 .015 574 Left fusiform gyrus

2 .044 493 Right superior temporal gyrus

After adjusting for PGS-EA

1 .024 503 Left parahippocampal gyrus

Abbreviation: PGS-EA, polygenic score for educational attainment.

Note: Covariates were age, age2, sex, scanner, total brain volume, and principal components 1–10.
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3.4.2 | Parental education

Higher parental education was significantly associated with greater

executive function, vocabulary, and episodic memory (see Table S4).

Parental education remained significantly associated with executive

function and vocabulary after controlling for PGS-EA (see Table S4).

There were no significant interactions between parental education

and age or age2 in the prediction of the neurocognitive skills.

3.5 | SA as a mediator of associations between
PGS-EA and neurocognitive skills

We also investigated whether any of the SA measures found to be

significantly associated with PGS-EA (left IFG cluster SA, left medial

OFC/rostral ACC cluster SA, total SA) mediated the associations

between PGS-EA and neurocognitive skills. Total SA was significantly

and positively associated with executive function (β = .06, p = .0391,

ηp
2 = .0118) but not vocabulary or episodic memory after controlling

for age, age2, sex, site, PGS-EA, PC1-10, and parental education. SA in

the left medial OFC/rostral ACC cluster was not significantly associ-

ated with any of the neurocognitive outcomes. SA in the left IFG clus-

ter was significantly and positively associated with executive function

(β = .05, p = .0391, ηp
2 = .0118) but not vocabulary or episodic mem-

ory, after controlling for age, age2, sex, site, PGS-EA, PC1-10, and

parental education. The association between left IFG SA and execu-

tive function did not remain significant after additionally controlling

for total brain volume (β = .04, p = .1414, ηp
2 = .0061).

SA in the left IFG cluster significantly mediated the association

between PGS-EA and executive function, ab path = .02, SE = .01,

95% CI .0005–.0460, although this effect did not remain significant

after additionally controlling for total brain volume. Higher PGS-EA

was significantly associated with greater left IFG SA, which in turn

was significantly associated with higher executive function (see

Figure 3). Total SA did not significantly mediate the association

between PGS-EA and executive function.

Analyses were also conducted using SA in the anatomically

defined parcellations corresponding to the left IFG cluster found to be

associated with PGS-EA in the vertex-wise analyses. These analyses

focused on SA summed across the left pars orbitalis and pars triangu-

laris, as defined by the Desikan-Killiany-Tourville (DKT) atlas (Klein &

Tourville, 2012). Greater SA in this IFG region was significantly associ-

ated with higher executive function, β = .06, p = .0197, ηp
2 = .0154,

but was not significantly associated with vocabulary or episodic mem-

ory. SA in the left IFG significantly mediated the association between

PGS-EA and executive function, ab path = .02, SE = .01, 95% CI

.0019–.0518. Similar to results shown in Figure 3, higher PGS-EA was

associated with greater SA in the left IFG (β = .14, p = .0031) which

was associated with greater executive function (β = .06, p = .0235).

The total effect (c path) was marginally significant (β = .04,

p = .0542), and the direct effect (c0 path) was not significant (β = .03,

p = .1195). These associations did not remain significant after addi-

tionally controlling for total brain volume.

4 | DISCUSSION

The main goals of this study were to examine (1) the independent

associations of educational attainment polygenic scores (PGS-EA) and

parental education with cortical structure and neurocognitive skills

and (2) the associations among PGS-EA, cortical structure, and neuro-

cognitive skills in children and adolescents. Higher parental education

was significantly correlated with higher PGS-EA in children and ado-

lescents, replicating previous findings and suggesting a gene–

environment correlation (Belsky et al., 2016, 2018; Judd et al., 2020;

Selzam et al., 2017). For example, passive gene–environment correla-

tion may occur because parents create a family environment that cor-

responds to their genotypes and correlates with the genotypes of

their children. Results from this study indicated that PGS-EA and

parental education explained unique variability in total cortical surface

area (SA) and vocabulary in children and adolescents. These and other

novel findings from our study that build on previous work are dis-

cussed below.

4.1 | PGS-EA and parental education
independently associate with total SA and vocabulary

Socioeconomic factors and PGS-EA made unique contributions to

total SA in children and adolescents, consistent with previous work

(Judd et al., 2020). Higher parental education (and family income) and

PGS-EA were both significantly associated with greater total

SA. Associations between socioeconomic factors and total SA were

attenuated but remained significant after adjusting for PGS-EA, which

accounts for some genetic confounding (Wertz et al., 2020). These

findings are consistent with the notion of independent genetic and

environmental associations with total SA, although inferences about

environmental transmission cannot be made. Evidence from random-

ized trials of poverty reduction and animal models of chronic stress

F IGURE 3 Surface area (SA) in the left inferior frontal gyrus (IFG)
significantly mediated the association between educational
attainment polygenic scores (PGS-EA) and executive function. The
solid and dotted lines between PGS-EA and executive function
represent the total (c path) and direct (c0 path) associations,
respectively. The line between PGS-EA and left IFG SA represents the
a path, and the line between left IFG SA and executive function
represents the b path. +p < .10, *p < .05, **p < .01
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and environmental enrichment suggests that at least part of the asso-

ciation between socioeconomic factors and children's cognitive devel-

opment and brain function may be environmentally mediated

(Davidson & McEwen, 2012; Duncan et al., 2017; Troller-Renfree

et al., 2022; van Praag et al., 2000). In the current study, associations

between socioeconomic factors and SA in children and adolescents,

even after accounting for PGS-EA, cannot be interpreted as purely

‘environmental’ due to other sources of genetic confounding.

4.2 | PGS-EA is associated with frontal cortical
surface area

Higher PGS-EA were significantly associated with greater SA in left

medial orbitofrontal, rostral anterior cingulate, and inferior frontal cor-

tical regions. These findings are consistent with one previous study of

adults (Mitchell et al., 2020) but not another study of adolescents that

found a localized association between PGS-EA and SA in the right

intraparietal sulcus (Judd et al., 2020).

Greater left IFG SA (and anatomically defined left pars triangularis

and pars orbitalis SA) significantly mediated the association between

higher PGS-EA and higher executive function, consistent with research

documenting involvement of the IFG in executive function (Bari &

Robbins, 2013). The association between PGS-EA and left IFG SA may

have implications for executive function, potentially partially explaining

previously reported associations between PGS-EA and academic

achievement (von Stumm et al., 2020). It is noteworthy that these

results did not remain significant after accounting for total brain vol-

ume. There is a lack of consensus on whether to control for total brain

volume (Tadayon et al., 2020), with some recent studies not controlling

for this variable (McDermott et al., 2019; Noble et al., 2015). Although

the left IFG is also critical to language (Friederici, 2011), left IFG SA

was not significantly associated with vocabulary. SA in the medial

OFC/rostral ACC cluster was not significantly associated with execu-

tive function, vocabulary, or episodic memory.

In addition to cognitive skills (Allegrini et al., 2019; Plomin & von

Stumm, 2018; Wertz et al., 2018), PGS-EA have also been associated

with “noncognitive” skills (e.g., motivation, persistence, grit) that facili-

tate academic success (Belsky et al., 2016; Smith-Woolley et al., 2019)

(Heckman, 2006). It is possible that the associations of PGS-EA with SA

in medial OFC and rostral ACC regions, which have been associated

with top-down control over emotional and motivational processes

(Etkin et al., 2011; Rolls, 2019), could be due to genetic effects on non-

cognitive skills that lead to variability in academic achievement.

Because the PING data set does not include data on these skills, this

possibility was not able to be tested in the current study.

Genetic variants associated with educational attainment have

been linked with genes showing elevated expression in neural tissue

(Okbay et al., 2016). Genetic propensity to higher educational attain-

ment may include variants that promote optimal cortical development.

The cellular processes underlying developmental changes in SA,

including synaptic function, have been associated with genes linked

with the significant SNPs identified in GWAS of educational

attainment (Deary et al., 2021; Okbay et al., 2016). PGS-EA was not

significantly associated with mean global CT, consistent with previous

research on adolescents and adults (Judd et al., 2020; Mitchell

et al., 2020).

4.3 | Socioeconomic factors show associations
with frontal and temporal SA and CT after controlling
for PGS-EA

4.3.1 | Cortical surface area

Associations between parental education and SA were most promi-

nent in the left parahippocampal gyrus, left fusiform gyrus, and right

superior temporal gyrus after adjusting for total brain volume and

other covariates. Parental education was significantly associated with

SA in the left parahippocampal gyrus after additionally adjusting for

PGS-EA. The parahippocampal gyrus, as part of the medial temporal

lobe, has been strongly associated with episodic memory

(Eichenbaum, 2006), which varies significantly across socioeconomic

gradients (Noble et al., 2005, 2007; Noble & Giebler, 2020). In addi-

tion, there was a significant parental education-by-age2 interaction for

SA in the left superior frontal gyrus, such that higher parental educa-

tion was associated with greater SA in the left superior frontal gyrus

between 18 and 21 years of age while controlling for PGS-EA. Socio-

economic factors may impact frontal and temporal SA in children and

adolescents via multiple proximal environmental factors, including var-

iability in exposure to chronic stress (e.g., household chaos and unpre-

dictability, neighborhood violence, crowding/noise, family conflict)

and cognitive and linguistic stimulation (Duncan et al., 2017; Evans &

Kim, 2013; Merz et al., 2019; Pace et al., 2017).

When not adjusting for total brain volume or PGS-EA, similar to

analytic approaches used in previous work (McDermott et al., 2019;

Noble et al., 2015), parental education was significantly associated

with SA in more cortical regions, including larger portions of the bilat-

eral parahippocampal gyrus, fusiform gyrus, and superior temporal

gyrus. In a previous study that also used the PING sample, associa-

tions between parental education and SA were more widespread

(Noble et al., 2015). These differences in results could be due to meth-

odological factors, such as the current study's inclusion of only partici-

pants with European ancestry due to the focus on PGS-EA.

Nonetheless, the cortical regions significantly associated with parental

education in the current study largely overlapped with those associ-

ated with parental education in the larger PING study (Noble

et al., 2015) and are associated with cognitive skills such as memory

and reading found to be highly susceptible to variability in socioeco-

nomic background (Duncan et al., 2017; Noble et al., 2005, 2007).

4.3.2 | Cortical thickness

Higher family income was significantly associated with greater global

(mean) CT, and this association was attenuated but remained
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significant after controlling for PGS-EA. In comparison to studies of

socioeconomic factors and total SA, associations between socioeco-

nomic factors and mean CT in children and adolescents have been

mixed (Noble & Giebler, 2020; Rakesh & Whittle, 2021). When associ-

ations have been found, socioeconomic factors have been positively

associated with mean CT in children and adolescents (Noble

et al., 2015; Rakesh & Whittle, 2021). Although the “main effect” of

parental education on global (mean) CT was not significant, there was

a significant interaction between parental education and age for mean

CT. Vertex-wise analyses indicated significant interactions between

parental education and age for CT in the right IFG (primarily pars orbi-

talis), calcarine fissure, and precuneus. Previous studies using the full

PING sample found interactions between parental education and age2

for mean CT (Piccolo et al., 2016) and CT in the right middle temporal

gyrus (Khundrakpam, Choudhury, et al., 2020), whereas we found

interactions with age rather than age2 in our analyses which con-

trolled for PGS-EA. Nonetheless, the overall pattern of results was

similar, with higher parental education associated with greater CT in

older children and adolescents. In our study, these interactions were

found after controlling for PGS-EA. Thus, the current findings extend

previous work by suggesting that such associations may not be wholly

attributable to genetic confounding.

4.4 | Socioeconomic factors show attenuated
associations with neurocognitive skills after
controlling for PGS-EA

Higher parental education and family income were significantly asso-

ciated with higher executive function and vocabulary, and these asso-

ciations were attenuated but remained significant after accounting for

genetic predisposition to educational attainment. These results are

consistent with prior work that has frequently documented socioeco-

nomic disparities in language and executive function in children

(Lawson et al., 2017; Noble et al., 2005, 2007; Romeo et al., 2018).

The current findings extend this work by showing that such associa-

tions remain significant even after controlling for children's education-

linked genetics. These results are consistent with the notion that SES-

related environmental factors (e.g., language input, chronic stress) may

be associated with language and executive function above and

beyond genetic factors (Duncan et al., 2017).

Several limitations of this study must be taken into account when

interpreting the findings. First, due to the cross-sectional, correlational

design of this study, causal inferences cannot be made. Second, as in

most studies that use genome-wide polygenic scores (Elliott

et al., 2019; von Stumm et al., 2020), analyses included only partici-

pants of European ancestry. Large-scale GWAS, which are required

for identifying genetic variants that are reliably associated with a phe-

notype, are currently not available in populations with other ances-

tries. Thus, findings from this study are not generalizable to other

ethnicities. Third, mediation questions are best examined using longi-

tudinal data (Cole & Maxwell, 2003; Maxwell & Cole, 2007) and

experimental designs (Fiedler et al., 2018), which were not available as

part of the data set used in this study. Although our results were con-

sistent with mediation, conclusions about mediation processes cannot

be made based on this study. Fourth, educational attainment poly-

genic scores are vulnerable to biases due to population stratification

that the principal components do not fully remove. These biases can

be addressed by using within-family difference polygenic score

designs, which need larger family-based data sets (Selzam

et al., 2019). Fifth, the sample size of this study may have affected

power to detect significant effects.

Findings from this study indicated that education-associated genetics

and socioeconomic factors accounted for unique variance in total SA and

vocabulary in children and adolescents. Educational attainment polygenic

scores were most prominently associated with SA in frontal regions,

including SA in the inferior frontal gyrus, which was associated with exec-

utive function. Associations of socioeconomic factors with total SA, exec-

utive function, and vocabulary were attenuated but remained significant

after controlling for PGS-EA. These results shed light on the roles of

education-linked genetics and socioeconomic factors in contributing to

cortical structure and neurocognitive skills in children and adolescents.

ACKNOWLEDGMENTS

Data used in this study are available through the National Institute of

Mental Health (NIMH) Data Archive (https://nda.nih.gov/) after pro-

viding the required data user agreement. Data collection and sharing

for this project was funded by the Pediatric Imaging, Neurocognition,

and Genetics (PING) Study (National Institutes of Health Grant

RC2DA029475). PING is funded by the National Institute on Drug

Abuse and the Eunice Kennedy Shriver National Institute of Child

Health and Human Development.

CONFLICT OF INTEREST

None declared.

DATA AVAILABILITY STATEMENT

Data for the PING study are publicly shared (https://nda.nih.gov/).

ORCID

Emily C. Merz https://orcid.org/0000-0003-1950-2345

Michael Thomas https://orcid.org/0000-0002-3026-7609

Budhachandra Khundrakpam https://orcid.org/0000-0001-8095-

5656

REFERENCES

Alemany, S., Jansen, P. R., Muetzel, R. L., Marques, N., El Marroun, H.,

Jaddoe, V. W. V., Polderman, T. J. C., Tiemeier, H., Posthuma, D., &

White, T. (2019). Common polygenic variations for psychiatric disorders

and cognition in relation to brain morphology in the general pediatric

population. Journal of the American Academy of Child and Adolescent Psy-

chiatry, 58(6), 600–607. https://doi.org/10.1016/j.jaac.2018.09.443
Allegrini, A. G., Selzam, S., Rimfeld, K., von Stumm, S., Pingault, J. B., &

Plomin, R. (2019). Genomic prediction of cognitive traits in childhood

and adolescence. Molecular Psychiatry, 24(6), 819–827. https://doi.

org/10.1038/s41380-019-0394-4

MERZ ET AL. 11

https://nda.nih.gov/
https://nda.nih.gov/
https://orcid.org/0000-0003-1950-2345
https://orcid.org/0000-0003-1950-2345
https://orcid.org/0000-0002-3026-7609
https://orcid.org/0000-0002-3026-7609
https://orcid.org/0000-0001-8095-5656
https://orcid.org/0000-0001-8095-5656
https://orcid.org/0000-0001-8095-5656
https://doi.org/10.1016/j.jaac.2018.09.443
https://doi.org/10.1038/s41380-019-0394-4
https://doi.org/10.1038/s41380-019-0394-4


Armstrong-Carter, E., Wertz, J., & Domingue, B. W. (2021). Genetics and

child development: Recent advances and their implications for devel-

opmental research. Child Development Perspectives, 15(1), 57–64.
https://doi.org/10.1111/cdep.12400

Bari, A., & Robbins, T. W. (2013). Inhibition and impulsivity: Behavioral and

neural basis of response control. Progress in Neurobiology, 108, 44–79.
https://doi.org/10.1016/j.pneurobio.2013.06.005

Bauer, D. J., & Curran, P. J. (2005). Probing interactions in fixed and multi-

level regression: Inferential and graphical techniques. Multivariate

Behavioral Research, 40(3), 373–400. https://doi.org/10.1207/

s15327906mbr4003_5

Bauer, P. J., Dikmen, S. S., Heaton, R. K., Mungas, D., Slotkin, J., &

Beaumont, J. L. (2013). III. NIH toolbox cognition battery (CB): Mea-

suring episodic memory. Monographs of the Society for Research in

Child Development, 78(4), 34–48. https://doi.org/10.1111/mono.

12033

Belsky, D. W., Domingue, B. W., Wedow, R., Arseneault, L.,

Boardman, J. D., Caspi, A., Conley, D., Fletcher, J. M., Freese, J.,

Herd, P., Moffitt, T. E., Poulton, R., Sicinski, K., Wertz, J., &

Harris, K. M. (2018). Genetic analysis of social-class mobility in five

longitudinal studies. Proceedings of the National Academy of Sciences of

the United States of America, 115(31), E7275–E7284. https://doi.org/
10.1073/pnas.1801238115

Belsky, D. W., Moffitt, T. E., Corcoran, D. L., Domingue, B., Harrington, H.,

Hogan, S., Houts, R., Ramrakha, S., Sugden, K., Williams, B. S.,

Poulton, R., & Caspi, A. (2016). The genetics of success: How single-

nucleotide polymorphisms associated with educational attainment

relate to life-course development. Psychological Science, 27(7), 957–
972. https://doi.org/10.1177/0956797616643070

Chang, C. C., Chow, C. C., Tellier, L. C., Vattikuti, S., Purcell, S. M., &

Lee, J. J. (2015). Second-generation PLINK: Rising to the challenge of

larger and richer datasets. GigaScience, 4, 7. https://doi.org/10.1186/

s13742-015-0047-8

Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd

ed.). Routledge. https://doi.org/10.4324/9780203771587

Cole, D. A., & Maxwell, S. E. (2003). Testing mediational models with longi-

tudinal data: Questions and tips in the use of structural equation

modeling. Journal of Abnormal Psychology, 112(4), 558–577. https://
doi.org/10.1037/0021-843X.112.4.558

Davidson, R. J., & McEwen, B. S. (2012). Social influences on neuroplasti-

city: Stress and interventions to promote well-being. Nature Neurosci-

ence, 15(5), 689–695. https://doi.org/10.1038/nn.3093
Deary, I. J., Cox, S. R., & Hill, W. D. (2021). Genetic variation, brain, and

intelligence differences. Molecular Psychiatry, 27, 335–353. https://
doi.org/10.1038/s41380-021-01027-y

Dikmen, S. S., Bauer, P. J., Weintraub, S., Mungas, D., Slotkin, J.,

Beaumont, J. L., Gershon, R., Temkin, N. R., & Heaton, R. K. (2014).

Measuring episodic memory across the lifespan: NIH toolbox picture

sequence memory test. Journal of the International Neuropsychological

Society, 20(6), 611–619. https://doi.org/10.1017/S135561771

4000460

Domingue, B. W., Belsky, D., Conley, D., Harris, K. M., & Boardman, J. D.

(2015). Polygenic influence on educational attainment: New evidence

from the National Longitudinal Study of adolescent to adult health.

AERA Open, 1(3), 1–13. https://doi.org/10.1177/2332858415599972
Du Rietz, E., Coleman, J., Glanville, K., Choi, S. W., O'Reilly, P. F., &

Kuntsi, J. (2018). Association of polygenic risk for attention-

deficit/hyperactivity disorder with co-occurring traits and disorders.

Biological Psychiatry. Cognitive Neuroscience and Neuroimaging, 3(7),

635–643. https://doi.org/10.1016/j.bpsc.2017.11.013
Dudbridge, F. (2013). Power and predictive accuracy of polygenic risk

scores. PLoS Genetics, 9(3), e1003348. https://doi.org/10.1371/

journal.pgen.1003348

Duncan, G. J., & Magnuson, K. (2012). Socioeconomic status and cognitive

functioning: Moving from correlation to causation. Wiley

Interdisciplinary Reviews: Cognitive Science, 3(3), 377–386. https://doi.
org/10.1002/wcs.1176

Duncan, G. J., Magnuson, K., & Votruba-Drzal, E. (2017). Moving beyond

correlations in assessing the consequences of poverty. Annual Review

of Psychology, 68, 413–434. https://doi.org/10.1146/annurev-psych-
010416-044224

Eichenbaum, H. (2006). Remembering: Functional organization of the

declarative memory system. Current Biology, 16(16), R643–R645.
https://doi.org/10.1016/j.cub.2006.07.026

Elliott, M. L., Belsky, D. W., Anderson, K., Corcoran, D. L., Ge, T., Knodt, A.,

Prinz, J. A., Sugden, K., Williams, B., Ireland, D., Poulton, R., Caspi, A.,

Holmes, A., Moffitt, T., & Hariri, A. R. (2019). A polygenic score for

higher educational attainment is associated with larger brains. Cerebral

Cortex (New York, NY), 29(8), 3496–3504. https://doi.org/10.1093/

cercor/bhy219

Etkin, A., Egner, T., & Kalisch, R. (2011). Emotional processing in anterior

cingulate and medial prefrontal cortex. Trends in Cognitive Sciences,

15(2), 85–93. https://doi.org/10.1016/j.tics.2010.11.004
Euesden, J., Lewis, C. M., & O'Reilly, P. F. (2015). PRSice: Polygenic risk

score software. Bioinformatics (Oxford, England), 31(9), 1466–1468.
https://doi.org/10.1093/bioinformatics/btu848

Evans, G. W., & Kim, P. (2013). Childhood poverty, chronic stress, self-reg-

ulation, and coping. Child Development Perspectives, 7(1), 43–48.
https://doi.org/10.1111/cdep.12013

Farah, M. J. (2017). The neuroscience of socioeconomic status: Correlates,

causes, and consequences. Neuron, 96(1), 56–71. https://doi.org/10.
1016/j.neuron.2017.08.034

Fiedler, K., Harris, C., & Schott, M. (2018). Unwarranted inferences from

statistical mediation tests – An analysis of articles published in 2015.

Journal of Experimental Social Psychology, 75, 95–102. https://doi.org/
10.1016/j.jesp.2017.11.008

Friederici, A. D. (2011). The brain basis of language processing: From

structure to function. Physiological Reviews, 91(4), 1357–1392.
https://doi.org/10.1152/physrev.00006.2011

Gershon, R. C., Cook, K. F., Mungas, D., Manly, J. J., Slotkin, J.,

Beaumont, J. L., & Weintraub, S. (2014). Language measures of the

NIH toolbox cognition battery. Journal of the International Neuropsy-

chological Society, 20(6), 642–651. https://doi.org/10.1017/

S1355617714000411

Gershon, R. C., Slotkin, J., Manly, J. J., Blitz, D. L., Beaumont, J. L.,

Schnipke, D., Wallner-Allen, K., Golinkoff, R. M., Gleason, J. B., Hirsh-

Pasek, K., Adams, M. J., & Weintraub, S. (2013). IV. NIH toolbox cogni-

tion battery (CB): Measuring language (vocabulary comprehension and

reading decoding). Monographs of the Society for Research in Child

Development, 78(4), 49–69. https://doi.org/10.1111/mono.12034

Hayes, A. F. (2013). Introduction to mediation, moderation, and conditional

process analysis: A regression-based approach. Guilford Press.

Heckman, J. J. (2006). Skill formation and the economics of investing in

disadvantaged children. Science, 312(5782), 1900–1902. https://doi.
org/10.1126/science.1128898

Jernigan, T. L., Brown, T. T., Hagler, D. J., Jr., Akshoomoff, N., Bartsch, H.,

Newman, E., Thompson, W. K., Bloss, C. S., Murray, S. S., Schork, N.,

Kennedy, D. N., Kuperman, J. M., McCabe, C., Chung, Y., Libiger, O.,

Maddox, M., Casey, B. J., Chang, L., Ernst, T. M., … Dale, A. M. (2016).

The pediatric imaging, neurocognition, and genetics (PING) data repos-

itory. NeuroImage, 124, 1149–1154. https://doi.org/10.1016/j.

neuroimage.2015.04.057

Judd, N., Sauce, B., Wiedenhoeft, J., Tromp, J., Chaarani, B., Schliep, A.,

Noort, B. V., Penttilä, J., Grimmer, Y., Insensee, C., Becker, A.,

Banaschewski, T., Bokde, A. L. W., Quinlan, E. B., Desrivières, S.,

Flor, H., Grigis, A., Gowland, P., Heinz, A., … Klingberg, T. (2020). Cog-

nitive and brain development is independently influenced by socioeco-

nomic status and polygenic scores for educational attainment.

Proceedings of the National Academy of Sciences, 117(22), 12411–
12418. https://doi.org/10.1073/pnas.2001228117

12 MERZ ET AL.

https://doi.org/10.1111/cdep.12400
https://doi.org/10.1016/j.pneurobio.2013.06.005
https://doi.org/10.1207/s15327906mbr4003_5
https://doi.org/10.1207/s15327906mbr4003_5
https://doi.org/10.1111/mono.12033
https://doi.org/10.1111/mono.12033
https://doi.org/10.1073/pnas.1801238115
https://doi.org/10.1073/pnas.1801238115
https://doi.org/10.1177/0956797616643070
https://doi.org/10.1186/s13742-015-0047-8
https://doi.org/10.1186/s13742-015-0047-8
https://doi.org/10.4324/9780203771587
https://doi.org/10.1037/0021-843X.112.4.558
https://doi.org/10.1037/0021-843X.112.4.558
https://doi.org/10.1038/nn.3093
https://doi.org/10.1038/s41380-021-01027-y
https://doi.org/10.1038/s41380-021-01027-y
https://doi.org/10.1017/S1355617714000460
https://doi.org/10.1017/S1355617714000460
https://doi.org/10.1177/2332858415599972
https://doi.org/10.1016/j.bpsc.2017.11.013
https://doi.org/10.1371/journal.pgen.1003348
https://doi.org/10.1371/journal.pgen.1003348
https://doi.org/10.1002/wcs.1176
https://doi.org/10.1002/wcs.1176
https://doi.org/10.1146/annurev-psych-010416-044224
https://doi.org/10.1146/annurev-psych-010416-044224
https://doi.org/10.1016/j.cub.2006.07.026
https://doi.org/10.1093/cercor/bhy219
https://doi.org/10.1093/cercor/bhy219
https://doi.org/10.1016/j.tics.2010.11.004
https://doi.org/10.1093/bioinformatics/btu848
https://doi.org/10.1111/cdep.12013
https://doi.org/10.1016/j.neuron.2017.08.034
https://doi.org/10.1016/j.neuron.2017.08.034
https://doi.org/10.1016/j.jesp.2017.11.008
https://doi.org/10.1016/j.jesp.2017.11.008
https://doi.org/10.1152/physrev.00006.2011
https://doi.org/10.1017/S1355617714000411
https://doi.org/10.1017/S1355617714000411
https://doi.org/10.1111/mono.12034
https://doi.org/10.1126/science.1128898
https://doi.org/10.1126/science.1128898
https://doi.org/10.1016/j.neuroimage.2015.04.057
https://doi.org/10.1016/j.neuroimage.2015.04.057
https://doi.org/10.1073/pnas.2001228117


Khundrakpam, B., Choudhury, S., Vainik, U., Al-Sharif, N., Bhutani, N.,

Jeon, S., Gold, I., & Evans, A. (2020). Distinct influence of parental

occupation on cortical thickness and surface area in children and ado-

lescents: Relation to self-esteem. Human Brain Mapping, 41(18), 5097–
5113. https://doi.org/10.1002/hbm.25169

Khundrakpam, B., Vainik, U., Gong, J., Al-Sharif, N., Bhutani, N., Kiar, G.,

Zeighami, Y., Kirschner, M., Luo, C., Dagher, A., & Evans, A. (2020).

Neural correlates of polygenic risk score for autism spectrum disorders

in general population. Brain Communications, 2(2), fcaa092. https://doi.

org/10.1093/braincomms/fcaa092

Klein, A., & Tourville, J. (2012). 101 labeled brain images and a consistent

human cortical labeling protocol. Frontiers in Neuroscience, 6. https://

doi.org/10.3389/fnins.2012.00171

Krapohl, E., & Plomin, R. (2016). Genetic link between family socioeco-

nomic status and children's educational achievement estimated from

genome-wide SNPs. Molecular Psychiatry, 21(3), 437–443. https://doi.
org/10.1038/mp.2015.2

Kriegeskorte, N., Simmons, W. K., Bellgowan, P. S. F., & Baker, C. I. (2009).

Circular analysis in systems neuroscience: The dangers of double dip-

ping. Nature Neuroscience, 12(5), 535–540. https://doi.org/10.1038/
nn.2303

Lawson, G. M., Duda, J. T., Avants, B. B., Wu, J., & Farah, M. J. (2013).

Associations between children's socioeconomic status and prefrontal

cortical thickness. Developmental Science, 16(5), 641–652. https://doi.
org/10.1111/desc.12096

Lawson, G. M., Hook, C. J., & Farah, M. J. (2017). A meta-analysis of the

relationship between socioeconomic status and executive function

performance among children. Developmental Science, 21, e12529.

https://doi.org/10.1111/desc.12529

Lee, J. J., Wedow, R., Okbay, A., Kong, E., Maghzian, O., Zacher, M.,

Nguyen-Viet, T. A., Bowers, P., Sidorenko, J., Karlsson Linnér, R.,

Fontana, M. A., Kundu, T., Lee, C., Li, H., Li, R., Royer, R.,

Timshel, P. N., Walters, R. K., Willoughby, E. A., … Cesarini, D. (2018).

Gene discovery and polygenic prediction from a genome-wide associa-

tion study of educational attainment in 1.1 million individuals. Nature

Genetics, 50(8), 1112–1121. https://doi.org/10.1038/s41588-018-

0147-3

Loughnan, R. J., Palmer, C. E., Thompson, W. K., Dale, A. M.,

Jernigan, T. L., & Fan, C. C. (2021). Gene-experience correlation during

cognitive development: Evidence from the adolescent brain cognitive

development (ABCD) StudySM. BioRxiv, 637512. https://doi.org/10.

1101/637512

Mackey, A. P., Finn, A. S., Leonard, J. A., Jacoby Senghor, D. S.,

West, M. R., Gabrieli, C. F. O., & Gabrieli, J. D. E. (2015). Neuroana-

tomical correlates of the income achievement gap. Psychological Sci-

ence, 26(6), 925–933. https://doi.org/10.1177/0956797615572233
MacKinnon, D. P., Lockwood, C. M., Hoffman, J. M., West, S. G., &

Sheets, V. (2002). A comparison of methods to test mediation and

other intervening variable effects. Psychological Methods, 7(1), 83–104.
Maxwell, S. E., & Cole, D. A. (2007). Bias in cross-sectional analyses of lon-

gitudinal mediation. Psychological Methods, 12(1), 23–44. https://doi.
org/10.1037/1082-989X.12.1.23

McCarthy, S., Das, S., Kretzschmar, W., Delaneau, O., Wood, A. R.,

Teumer, A., Kang, H. M., Fuchsberger, C., Danecek, P., Sharp, K.,

Luo, Y., Sidore, C., Kwong, A., Timpson, N., Koskinen, S., Vrieze, S.,

Scott, L. J., Zhang, H., Mahajan, A., … Haplotype Reference Consor-

tium. (2016). A reference panel of 64,976 haplotypes for genotype

imputation. Nature Genetics, 48(10), 1279–1283. https://doi.org/10.
1038/ng.3643

McDermott, C. L., Seidlitz, J., Nadig, A., Liu, S., Clasen, L. S.,

Blumenthal, J. D., Reardon, P. K., Lalonde, F., Greenstein, D., Patel, R.,

Chakravarty, M. M., Lerch, J. P., & Raznahan, A. (2019). Longitudinally

mapping childhood socioeconomic status associations with cortical

and subcortical morphology. The Journal of Neuroscience, 39(8), 1365–
1373. https://doi.org/10.1523/JNEUROSCI.1808-18.2018

McLoyd, V. C. (1998). Socioeconomic disadvantage and child develop-

ment. The American Psychologist, 53(2), 185–204.
Merz, E. C., He, X., & Noble, K. G. (2018). Anxiety, depression, impulsivity,

and brain structure in children and adolescents. NeuroImage: Clinical,

20, 243–251. https://doi.org/10.1016/j.nicl.2018.07.020
Merz, E. C., Maskus, E. A., Melvin, S. A., He, X., & Noble, K. G. (2020).

Socioeconomic disparities in language input are associated with chil-

dren's language-related brain structure and reading skills. Child Devel-

opment, 91(3), 846–860. https://doi.org/10.1111/cdev.13239
Merz, E. C., Wiltshire, C. A., & Noble, K. G. (2019). Socioeconomic inequal-

ity and the developing brain: Spotlight on language and executive

function. Child Development Perspectives, 13(1), 15–20. https://doi.

org/10.1111/cdep.12305

Mills, K. L., Goddings, A.-L., Herting, M. M., Meuwese, R., Blakemore, S.-J.,

Crone, E. A., Dahl, R. E., Güro�glu, B., Raznahan, A., Sowell, E. R., &

Tamnes, C. K. (2016). Structural brain development between child-

hood and adulthood: Convergence across four longitudinal samples.

NeuroImage, 141, 273–281. https://doi.org/10.1016/j.neuroimage.

2016.07.044

Mitchell, B. L., Cuéllar-Partida, G., Grasby, K. L., Campos, A. I., Strike, L. T.,

Hwang, L.-D., Okbay, A., Thompson, P. M., Medland, S. E.,

Martin, N. G., Wright, M. J., & Rentería, M. E. (2020). Educational

attainment polygenic scores are associated with cortical total surface

area and regions important for language and memory. NeuroImage,

212, 116691. https://doi.org/10.1016/j.neuroimage.2020.116691

Miyake, A., Friedman, N. P., Emerson, M. J., Witzki, A. H., Howerter, A., &

Wager, T. D. (2000). The unity and diversity of executive functions

and their contributions to complex “frontal lobe” tasks: A latent vari-

able analysis. Cognitive Psychology, 41(1), 49–100. https://doi.org/10.
1006/cogp.1999.0734

Noble, K. G., & Giebler, M. A. (2020). The neuroscience of socioeconomic

inequality. Current Opinion in Behavioral Sciences, 36, 23–28. https://
doi.org/10.1016/j.cobeha.2020.05.007

Noble, K. G., Houston, S. M., Brito, N. H., Bartsch, H., Kan, E.,

Kuperman, J. M., Akshoomoff, N., Amaral, D. G., Bloss, C. S.,

Libiger, O., Schork, N. J., Murray, S. S., Casey, B. J., Chang, L.,

Ernst, T. M., Frazier, J. A., Gruen, J. R., Kennedy, D. N., Zijl, P. V., …
Sowell, E. R. (2015). Family income, parental education and brain

structure in children and adolescents. Nature Neuroscience, 18(5), 773–
778. https://doi.org/10.1038/nn.3983

Noble, K. G., McCandliss, B. D., & Farah, M. J. (2007). Socioeconomic gra-

dients predict individual differences in neurocognitive abilities. Devel-

opmental Science, 10(4), 464–480. https://doi.org/10.1111/j.1467-

7687.2007.00600.x

Noble, K. G., Norman, M. F., & Farah, M. J. (2005). Neurocognitive corre-

lates of socioeconomic status in kindergarten children. Developmental

Science, 8(1), 74–87. https://doi.org/10.1111/j.1467-7687.2005.

00394.x

Okbay, A., Beauchamp, J. P., Fontana, M. A., Lee, J. J., Pers, T. H.,

Rietveld, C. A., Turley, P., Chen, G.-B., Emilsson, V., Meddens, S. F. W.,

Oskarsson, S., Pickrell, J. K., Thom, K., Timshel, P., de Vlaming, R.,

Abdellaoui, A., Ahluwalia, T. S., Bacelis, J., Baumbach, C., …
Benjamin, D. J. (2016). Genome-wide association study identifies

74 loci associated with educational attainment. Nature, 533(7604),

539–542. https://doi.org/10.1038/nature17671
Okbay, A., Wu, Y., Wang, N., Jayashankar, H., Bennett, M., Nehzati, S. M.,

Sidorenko, J., Kweon, H., Goldman, G., Gjorgjieva, T., Jiang, Y.,

Hicks, B., Tian, C., Hinds, D. A., Ahlskog, R., Magnusson, P. K. E.,

Oskarsson, S., Hayward, C., Campbell, A., … Young, A. I. (2022). Poly-

genic prediction of educational attainment within and between fami-

lies from genome-wide association analyses in 3 million individuals.

Nature Genetics, 54(4), 437–449. https://doi.org/10.1038/s41588-

022-01016-z

Pace, A., Luo, R., Hirsh-Pasek, K., & Golinkoff, R. M. (2017). Identifying

pathways between socioeconomic status and language development.

MERZ ET AL. 13

https://doi.org/10.1002/hbm.25169
https://doi.org/10.1093/braincomms/fcaa092
https://doi.org/10.1093/braincomms/fcaa092
https://doi.org/10.3389/fnins.2012.00171
https://doi.org/10.3389/fnins.2012.00171
https://doi.org/10.1038/mp.2015.2
https://doi.org/10.1038/mp.2015.2
https://doi.org/10.1038/nn.2303
https://doi.org/10.1038/nn.2303
https://doi.org/10.1111/desc.12096
https://doi.org/10.1111/desc.12096
https://doi.org/10.1111/desc.12529
https://doi.org/10.1038/s41588-018-0147-3
https://doi.org/10.1038/s41588-018-0147-3
https://doi.org/10.1101/637512
https://doi.org/10.1101/637512
https://doi.org/10.1177/0956797615572233
https://doi.org/10.1037/1082-989X.12.1.23
https://doi.org/10.1037/1082-989X.12.1.23
https://doi.org/10.1038/ng.3643
https://doi.org/10.1038/ng.3643
https://doi.org/10.1523/JNEUROSCI.1808-18.2018
https://doi.org/10.1016/j.nicl.2018.07.020
https://doi.org/10.1111/cdev.13239
https://doi.org/10.1111/cdep.12305
https://doi.org/10.1111/cdep.12305
https://doi.org/10.1016/j.neuroimage.2016.07.044
https://doi.org/10.1016/j.neuroimage.2016.07.044
https://doi.org/10.1016/j.neuroimage.2020.116691
https://doi.org/10.1006/cogp.1999.0734
https://doi.org/10.1006/cogp.1999.0734
https://doi.org/10.1016/j.cobeha.2020.05.007
https://doi.org/10.1016/j.cobeha.2020.05.007
https://doi.org/10.1038/nn.3983
https://doi.org/10.1111/j.1467-7687.2007.00600.x
https://doi.org/10.1111/j.1467-7687.2007.00600.x
https://doi.org/10.1111/j.1467-7687.2005.00394.x
https://doi.org/10.1111/j.1467-7687.2005.00394.x
https://doi.org/10.1038/nature17671
https://doi.org/10.1038/s41588-022-01016-z
https://doi.org/10.1038/s41588-022-01016-z


Annual Review of Linguistics, 3(1), 285–308. https://doi.org/10.1146/
annurev-linguistics-011516-034226

Panizzon, M. S., Fennema-Notestine, C., Eyler, L. T., Jernigan, T. L., Prom-

Wormley, E., Neale, M., Jacobson, K., Lyons, M. J., Grant, M. D.,

Franz, C. E., Xian, H., Tsuang, M., Fischl, B., Seidman, L., Dale, A., &

Kremen, W. S. (2009). Distinct genetic influences on cortical surface

area and cortical thickness. Cerebral Cortex, 19(11), 2728–2735.
https://doi.org/10.1093/cercor/bhp026

Piccolo, L. R., Merz, E. C., He, X., Sowell, E. R., & Noble, K. G. (2016). Age-

related differences in cortical thickness vary by socioeconomic status. PLoS

One, 11(9), e0162511. https://doi.org/10.1371/journal.pone.0162511

Plomin, R., DeFries, J. C., Knopik, V. S., & Neiderhiser, J. M. (2016). Top

10 replicated findings from behavioral genetics. Perspectives on Psy-

chological Science, 11(1), 3–23. https://doi.org/10.1177/

1745691615617439

Plomin, R., & von Stumm, S. (2018). The new genetics of intelligence.

Nature Reviews. Genetics, 19(3), 148–159. https://doi.org/10.1038/

nrg.2017.104

Preacher, K. J., & Hayes, A. F. (2008). Asymptotic and resampling strate-

gies for assessing and comparing indirect effects in multiple mediator

models. Behavior Research Methods, 40(3), 879–891.
Price, A. L., Patterson, N. J., Plenge, R. M., Weinblatt, M. E.,

Shadick, N. A., & Reich, D. (2006). Principal components analysis cor-

rects for stratification in genome-wide association studies. Nature

Genetics, 38(8), 904–909. https://doi.org/10.1038/ng1847
Rabinowitz, J. A., Kuo, S. I.-C., Domingue, B., Smart, M., Felder, W.,

Benke, K., Maher, B. S., Ialongo, N. S., & Uhl, G. (2020). Pathways

between a polygenic score for educational attainment and higher edu-

cational attainment in an African American sample. Behavior Genetics,

50(1), 14–25. https://doi.org/10.1007/s10519-019-09982-7
Raffington, L., Czamara, D., Mohn, J. J., Falck, J., Schmoll, V., Heim, C.,

Binder, E. B., & Shing, Y. L. (2019). Stable longitudinal associations of

family income with children's hippocampal volume and memory persist

after controlling for polygenic scores of educational attainment. Devel-

opmental Cognitive Neuroscience, 40, 100720. https://doi.org/10.

1016/j.dcn.2019.100720

Rakesh, D., & Whittle, S. (2021). Socioeconomic status and the developing

brain—A systematic review of neuroimaging findings in youth. Neuro-

science and Biobehavioral Reviews, 130, 379–407. https://doi.org/10.
1016/j.neubiorev.2021.08.027

Raznahan, A., Shaw, P., Lalonde, F., Stockman, M., Wallace, G. L.,

Greenstein, D., Clasen, L., Gogtay, N., & Giedd, J. N. (2011). How does

your cortex grow? The Journal of Neuroscience, 31(19), 7174–7177.
https://doi.org/10.1523/JNEUROSCI.0054-11.2011

Rea-Sandin, G., Oro, V., Strouse, E., Clifford, S., Wilson, M. N.,

Shaw, D. S., & Lemery-Chalfant, K. (2021). Educational attainment

polygenic score predicts inhibitory control and academic skills in early

and middle childhood. Genes, Brain, and Behavior, 20(7), e12762.

https://doi.org/10.1111/gbb.12762

Richardson, J. T. E. (2011). Eta squared and partial eta squared as measures

of effect size in educational research. Educational Research Review,

6(2), 135–147. https://doi.org/10.1016/j.edurev.2010.12.001
Rietveld, C. A., Medland, S. E., Derringer, J., Yang, J., Esko, T.,

Martin, N. W., Westra, H.-J., Shakhbazov, K., Abdellaoui, A.,

Agrawal, A., Albrecht, E., Alizadeh, B. Z., Amin, N., Barnard, J.,

Baumeister, S. E., Benke, K. S., Bielak, L. F., Boatman, J. A., Boyle, P. A.,

… Koellinger, P. D. (2013). GWAS of 126,559 individuals identifies

genetic variants associated with educational attainment. Science,

340(6139), 1467–1471. https://doi.org/10.1126/science.1235488
Rolls, E. T. (2019). The orbitofrontal cortex and emotion in health and dis-

ease, including depression. Neuropsychologia, 128, 14–43. https://doi.
org/10.1016/j.neuropsychologia.2017.09.021

Romeo, R. R., Christodoulou, J. A., Halverson, K. K., Murtagh, J., Cyr, A. B.,

Schimmel, C., Chang, P., Hook, P. E., & Gabrieli, J. D. E. (2018). Socio-

economic status and reading disability: Neuroanatomy and plasticity in

response to intervention. Cerebral Cortex, 28, 2297–2312. https://doi.
org/10.1093/cercor/bhx131

Selzam, S., Krapohl, E., von Stumm, S., O'Reilly, P. F., Rimfeld, K., Kovas, Y.,

Dale, P. S., Lee, J. J., & Plomin, R. (2017). Predicting educational

achievement from DNA. Molecular Psychiatry, 22(2), 267–272. https://
doi.org/10.1038/mp.2016.107

Selzam, S., Ritchie, S. J., Pingault, J.-B., Reynolds, C. A., O'Reilly, P. F., &

Plomin, R. (2019). Comparing within- and between-family polygenic

score prediction. The American Journal of Human Genetics, 105(2),

351–363. https://doi.org/10.1016/j.ajhg.2019.06.006
Sherif, T., Rioux, P., Rousseau, M.-E., Kassis, N., Beck, N., Adalat, R., Das, S.,

Glatard, T., & Evans, A. C. (2014). CBRAIN: A web-based, distributed

computing platform for collaborative neuroimaging research. Frontiers in

Neuroinformatics, 8, 54. https://doi.org/10.3389/fninf.2014.00054

Smith-Woolley, E., Selzam, S., & Plomin, R. (2019). Polygenic score for edu-

cational attainment captures DNA variants shared between personality

traits and educational achievement. Journal of Personality and Social Psy-

chology, 117(6), 1145–1163. https://doi.org/10.1037/pspp0000241
Tadayon, E., Pascual-Leone, A., & Santarnecchi, E. (2020). Differential con-

tribution of cortical thickness, surface area, and gyrification to fluid

and crystallized intelligence. Cerebral Cortex (New York, NY), 30(1),

215–225. https://doi.org/10.1093/cercor/bhz082
Troller-Renfree, S. V., Costanzo, M. A., Duncan, G. J., Magnuson, K.,

Gennetian, L. A., Yoshikawa, H., Halpern-Meekin, S., Fox, N. A., &

Noble, K. G. (2022). The impact of a poverty reduction intervention on

infant brain activity. Proceedings of the National Academy of Sciences of

the United States of America, 119(5). https://doi.org/10.1073/pnas.

2115649119

Tucker-Drob, E. M., & Bates, T. C. (2016). Large cross-national differences

in gene � socioeconomic status interaction on intelligence. Psychologi-

cal Science, 27(2), 138–149. https://doi.org/10.1177/

0956797615612727

Tulsky, D. S., Carlozzi, N., Chevalier, N., Espy, K., Beaumont, J., &

Mungas, D. (2013). NIH toolbox cognitive function battery (NIHTB-

CFB): Measuring working memory. Monographs of the Society for

Research in Child Development, 78(4), 70–87. https://doi.org/10.1111/
mono.12035

van Praag, H., Kempermann, G., & Gage, F. H. (2000). Neural conse-

quences of environmental enrichment. Nature Reviews Neuroscience,

1(3), 191–198. https://doi.org/10.1038/35044558
Vijayakumar, N., Mills, K. L., Alexander-Bloch, A., Tamnes, C. K., &

Whittle, S. (2018). Structural brain development: A review of method-

ological approaches and best practices. Developmental Cognitive Neuro-

science, 33, 129–148. https://doi.org/10.1016/j.dcn.2017.11.008
von Stumm, S., Smith-Woolley, E., Ayorech, Z., McMillan, A., Rimfeld, K.,

Dale, P. S., & Plomin, R. (2020). Predicting educational achievement

from genomic measures and socioeconomic status. Developmental Sci-

ence, 23(3), e12925. https://doi.org/10.1111/desc.12925

Ward, M. E., McMahon, G., Pourcain, B. S., Evans, D. M., Rietveld, C. A.,

Benjamin, D. J., Koellinger, P. D., Cesarini, D., Consortium, T. S.

S. G. A., Smith, G. D., & Timpson, N. J. (2014). Genetic variation associ-

ated with differential educational attainment in adults has anticipated

associations with school performance in children. PLoS One, 9(7),

e100248. https://doi.org/10.1371/journal.pone.0100248

Wertz, J., Caspi, A., Belsky, D. W., Beckley, A. L., Arseneault, L.,

Barnes, J. C., Corcoran, D. L., Hogan, S., Houts, R. M., Morgan, N.,

Odgers, C. L., Prinz, J. A., Sugden, K., Williams, B. S., Poulton, R., &

Moffitt, T. E. (2018). Genetics and crime: Integrating new genomic dis-

coveries into psychological research about antisocial behavior. Psycho-

logical Science, 29(5), 791–803. https://doi.org/10.1177/

0956797617744542

Wertz, J., Moffitt, T. E., Agnew-Blais, J., Arseneault, L., Belsky, D. W.,

Corcoran, D. L., Houts, R., Matthews, T., Prinz, J. A., Richmond-

Rakerd, L. S., Sugden, K., Williams, B., & Caspi, A. (2020). Using DNA

from mothers and children to study parental investment in children's

14 MERZ ET AL.

https://doi.org/10.1146/annurev-linguistics-011516-034226
https://doi.org/10.1146/annurev-linguistics-011516-034226
https://doi.org/10.1093/cercor/bhp026
https://doi.org/10.1371/journal.pone.0162511
https://doi.org/10.1177/1745691615617439
https://doi.org/10.1177/1745691615617439
https://doi.org/10.1038/nrg.2017.104
https://doi.org/10.1038/nrg.2017.104
https://doi.org/10.1038/ng1847
https://doi.org/10.1007/s10519-019-09982-7
https://doi.org/10.1016/j.dcn.2019.100720
https://doi.org/10.1016/j.dcn.2019.100720
https://doi.org/10.1016/j.neubiorev.2021.08.027
https://doi.org/10.1016/j.neubiorev.2021.08.027
https://doi.org/10.1523/JNEUROSCI.0054-11.2011
https://doi.org/10.1111/gbb.12762
https://doi.org/10.1016/j.edurev.2010.12.001
https://doi.org/10.1126/science.1235488
https://doi.org/10.1016/j.neuropsychologia.2017.09.021
https://doi.org/10.1016/j.neuropsychologia.2017.09.021
https://doi.org/10.1093/cercor/bhx131
https://doi.org/10.1093/cercor/bhx131
https://doi.org/10.1038/mp.2016.107
https://doi.org/10.1038/mp.2016.107
https://doi.org/10.1016/j.ajhg.2019.06.006
https://doi.org/10.3389/fninf.2014.00054
https://doi.org/10.1037/pspp0000241
https://doi.org/10.1093/cercor/bhz082
https://doi.org/10.1073/pnas.2115649119
https://doi.org/10.1073/pnas.2115649119
https://doi.org/10.1177/0956797615612727
https://doi.org/10.1177/0956797615612727
https://doi.org/10.1111/mono.12035
https://doi.org/10.1111/mono.12035
https://doi.org/10.1038/35044558
https://doi.org/10.1016/j.dcn.2017.11.008
https://doi.org/10.1111/desc.12925
https://doi.org/10.1371/journal.pone.0100248
https://doi.org/10.1177/0956797617744542
https://doi.org/10.1177/0956797617744542


educational attainment. Child Development, 91(5), 1745–1761. https://
doi.org/10.1111/cdev.13329

Winkler, A. M., Kochunov, P., Blangero, J., Almasy, L., Zilles, K., Fox, P. T.,

Duggirala, R., & Glahn, D. C. (2010). Cortical thickness or grey matter

volume? The importance of selecting the phenotype for imaging

genetics studies. NeuroImage, 53(3), 1135–1146. https://doi.org/10.
1016/j.neuroimage.2009.12.028

Worsley, K. J., Taylor, J. E., Tomaiuolo, F., & Lerch, J. (2004). Unified uni-

variate and multivariate random field theory. NeuroImage, 23(Suppl 1),

S189–S195. https://doi.org/10.1016/j.neuroimage.2004.07.026

Zelazo, P. D., Anderson, J. E., Richler, J., Wallner-Allen, K.,

Beaumont, J. L., & Weintraub, S. (2013). II. NIH toolbox cognition bat-

tery (CB): Measuring executive function and attention. Monographs of

the Society for Research in Child Development, 78(4), 16–33. https://
doi.org/10.1111/mono.12032

SUPPORTING INFORMATION

Additional supporting information can be found online in the Support-

ing Information section at the end of this article.

How to cite this article: Merz, E. C., Strack, J., Hurtado, H.,

Vainik, U., Thomas, M., Evans, A., & Khundrakpam, B. (2022).

Educational attainment polygenic scores, socioeconomic

factors, and cortical structure in children and adolescents.

Human Brain Mapping, 1–15. https://doi.org/10.1002/hbm.

26034

MERZ ET AL. 15

https://doi.org/10.1111/cdev.13329
https://doi.org/10.1111/cdev.13329
https://doi.org/10.1016/j.neuroimage.2009.12.028
https://doi.org/10.1016/j.neuroimage.2009.12.028
https://doi.org/10.1016/j.neuroimage.2004.07.026
https://doi.org/10.1111/mono.12032
https://doi.org/10.1111/mono.12032
https://doi.org/10.1002/hbm.26034
https://doi.org/10.1002/hbm.26034

	Educational attainment polygenic scores, socioeconomic factors, and cortical structure in children and adolescents
	1  INTRODUCTION
	1.1  PGS-EA and cortical structure
	1.2  Socioeconomic factors and cortical structure
	1.3  PGS-EA, socioeconomic factors, and neurocognitive skills
	1.4  Current study

	2  METHODS
	2.1  Participants
	2.2  Socioeconomic factors
	2.3  Genomic data
	2.4  Image acquisition and preprocessing
	2.4.1  Sample sizes

	2.5  Neurocognitive tasks
	2.6  Statistical analyses
	2.6.1  Covariates
	2.6.2  Mediation
	2.6.3  Moderation


	3  RESULTS
	3.1  Descriptive statistics
	3.2  PGS-EA, parental education, and SA
	3.2.1  PGS-EA
	3.2.2  Parental education

	3.3  PGS-EA, parental education, and CT
	3.3.1  PGS-EA
	3.3.2  Parental education

	3.4  PGS-EA, parental education, and neurocognitive skills
	3.4.1  PGS-EA
	3.4.2  Parental education

	3.5  SA as a mediator of associations between PGS-EA and neurocognitive skills

	4  DISCUSSION
	4.1  PGS-EA and parental education independently associate with total SA and vocabulary
	4.2  PGS-EA is associated with frontal cortical surface area
	4.3  Socioeconomic factors show associations with frontal and temporal SA and CT after controlling for PGS-EA
	4.3.1  Cortical surface area
	4.3.2  Cortical thickness

	4.4  Socioeconomic factors show attenuated associations with neurocognitive skills after controlling for PGS-EA

	ACKNOWLEDGMENTS
	CONFLICT OF INTEREST
	DATA AVAILABILITY STATEMENT

	REFERENCES


